CLD detector model overview

Oleksandr Viazlo

CERN

27 March 2018

< ∃→

< 17 ▶

CLD Detector Model

・四・・モト ・モト

CLD detector model

Simulation and reconstruction software tools

- For performance study of theCLD detector for FCC-ee one can benefit from the fully functional and well tested iLCSoft software used by the CLIC and ILC community.
- Detector geometry description and event simulation: DD4hep
- Event Reconstruction: Marlin
- Track Pattern recognition: TruthTracking or ConformalTracking
- Particle Flow Reconstruction: PandoraPFA

Tracking system

- Vertex detector
- Silicon pixels: 25x25µm
- Single-point resolution: 3 μm
- 3 double layers in barrel: 17-57 mm
- 3 double endcap disks per side: 160 - 300 mm
- Material budget: 0.3% X₀ per layer
 - Tracker detector
- Silicon pixel and microstrips detector
- Inner Tracker:
 - 3 barrel layers, 5 disks
- Outer Tracker:
 - 3 barrel layers, 4 disks
- Single-point resolution:
 - everywhere: 7 μ m x 90 μ m
 - 1st disk: 5 μm x 5 μm
- Material budget:
 - barrel: 1.1-1.2% X₀ per layer
 - disks: 1.4-1.6% X₀ per layer

VTX + Tracker + Beampipe Material Budget

Calorimetry

- Electromagnetic Calorimeter
- Si-W sampling calorimeter
- cell size 5 x 5 mm 2
- 40 layers (1.9mm thick W plates)
- 22 X₀
- Hadronic Calorimeter
- Scintillator-steel sampling calorimeter
- cell size 30 x 30 mm 2
- 44 layers (19mm thick steel plates)

5.5 λ₁

The magnet and muon system

Tracking performance

* Momentum resolution
* Tracking efficiency for single muons
* Tracking efficiency in complex events

A B F A B F

____ ▶

Momentum Resolution

• Statistics used: 10k single muons at fixed energy and θ for each datapoint

• Achieved momentum resolution of $4 \times 10^{-5} \text{ GeV}^{-1}$ for 100GeV muons in the barrel

Tracking efficiency for single muons

- Efficiency = fraction of reconstructed particles out of the reconstructable MC particles
- Reconstructable particles: stable MC particles with $p_T > 0.1$ GeV/c and $|\cos(\theta)| < 0.99$ which left at least 4 unique hits in tracking system
- Statistics used: 2M single muons for each dataset

Fully efficient tracking from 1 GeV

10/17

Tracking efficiency for Z-like boson events decaying at rest into light quarks

- Efficiency = fraction of pure reconstructed particles out of the reconstructable MC particles
- Pure reconstructed particles: 75% of hits from track are associated to the simulated MC particle

Fully efficient tracking from 1 GeV

Calorimetry performance

*Single particle identification efficiency *Jet energy resolution

∃ → < ∃</p>

Single particle identification efficiency

- Efficiency = fraction or matched reconstructed particles out of the simulated MC particles:
 - · reconstructed particle of the same type as simulated MC particle
 - angular matching: $\Delta heta <$ 0.01rad and $\Delta \phi <$ 0.02rad
 - energy matching:

• 99% muon efficiency and > 95% pion efficiency

- Photon merging procedure is used to recover inefficiency due to photon conversion
- Pandora parameters were retuned in order to recover electron inefficiency due to Bremsstrahlung

> 95% photons and electron efficiency [TODO electron plot will be updated]

The CLD design is finalized for the CDR

Overall dimensions settled

Detector performances is studied in full simulation

- Tracking performance
 - Momentum resolution and track reconstruction efficiency
- Calorimetry performance
 - Single particle ID efficiency
 - Jet energy resolution

Thank you for your attention!

A B F A B F

Possible additional plots

- Tracking performance:
 - Angular, *d*₀, *z*₀ resolutions
- Plots with background overlaid:
 - tracking efficiency
 - signle particle ID efficiency
 - jet energy resolution

A (10) A (10) A (10)

BACKUP

E • • • • •

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶