On the accuracy of reflection-based SMBH spin measurements in AGN

E. Kammoun (based on <u>arXiv:1802.06800</u>)

In collaboration with: E. Nardini (INAF - Arcetri) G. Risaliti (Uni of Florence)

Active Galactic Nucleus \rightarrow Supermassive Black Hole (~10⁶-10¹⁰ Msun)

Credits: NASA

Credits: NASA

Relativistic effects on the reflection features \rightarrow <u>one possible way</u> to measure the spin

... However, the AGN environment is <u>much more complicated</u>

Preliminary answer: spectral simulations

1) Simulation of high-quality <u>XMM+NuSTAR</u> spectra:

-single-epoch observation of low-redshift bright (1-3 mCrab) AGN,
- observed ranges of parameters. Total of 30 simulated spectra:

15 x **General** 9 x **Bare** 6 x **Kerr**

- 2) Blind fitting x2
 ⇒ 60 fitted spectra
- 3) Fit vs Input

E.K. 5 + 3 +2 E.N.

5 + 3 + 2

Preliminary answer: spectral simulations

IC

17

Results

ICYAA - Padova, 08 June 2018

Results

Conclusions

Low/intermediate spin: 22 cases

- Full: 3/18
- Fair: 6/22
- Undetermined: 6/22
- Failure: 7/22

High spin: 38 cases

- Full: 9/38
- Fair: 13/38
- Undetermined: 1/38
- Failure: 15/38

h < 5 rg: 30 cases

- Full: 10/30
- Fair: 16/30
- Undetermined: 0/30
- Failure: 4/30
- h > 5 rg: 30 cases
 - full: 2/30
 - Fair: 3/30
 - Undetermined: 7/30
 - Failure: 18/30

Conclusions

High spin & h < 5rg: 24 cases

- Full: 9/24
- Fair: 13/24
- Undetermined: 0/24
- Failure: 2/24

High spin & h > 5 rg: 14 cases

- <u>Full: 0/14</u>
- <u>Fair: 0/14</u>
- Undetermined: 1/14
- Failure: 13/14

Low/Intermediate spin & h < 5rg: 6 cases

- full: 1/6
- Fair: 3/6
- Undetermined: 0/6
- Failure: 2/6

Low/Intermediate spin & h > 5rg: 16 cases

- Full: 2/16
- Fair: 3/16
- Undetermined: 6/16
- Failure: 5/16

⇒ General trend: the extreme cases, i.e. high spin + small height, are more likely to be a success.

Observed Energy (keV)

ICYAA - Padova, 08 June 2018

Absorption vs Reflection

Absorption vs Reflection

Absorption vs Reflection

- Only <u>4/30</u> cases could be fitted with a model consistent of 2-3 partial covering absorption with no relativistic reflection.
- All of the 4 cases:
 - not bare
 - with **h > 5 rg.**
- Things become tricky for lower S/N or when the reflection spectrum is smooth.

 \Rightarrow How to break the degeneracy ?!

10keV⁻ Counts⁻ $a^* = 0.3$ h = 10 r_a Absorption $\Delta \chi^2$ χ^2 /dof = 497/487 Reflection b $\Delta \chi^2$ 0 χ^2 /dof = 480/480 10 Energy (keV) 28

Failure vs Observations

ICYAA - Padova

Some questions and potential next steps

★ Is there degeneracy within the reflection models themselves? → We re-fitted the "failed" cases with reflection by fixing A_{FE} and $\xi_d \Rightarrow$ nothing changed!

★ What about <u>variability</u>?
 → Step 2, maybe...

More with <u>ATHENA !</u>

★ Should we throw away all spin measurements?
 → Of course NO, but one has to be a bit careful, you know.....

Would you like to join the game?!

Backup slides

	Warm absorption	
N _H (cm ⁻²)		$10^{18} - 3 \times 10^{24}$
log xi		0-5
	Reflection	
h (Rg)		2-300
spin		0-0.998
inclination		3-89 deg
log xi		0-4.7
A _{Fe} (solar)		0.5-10
	Partial covering absorbers	
N _{H1} /N _{H2} (10 ²² cm-2)		0.01 - 20 / 0.01-500
	Thermal emission	
kT (keV)		0.1-15

Conclusions

Missing a component: 7 cases (** Only one case with high spin & low height **)

- Full: 1/7
- Fair: 0/7
- Undetermined: 1/7
- Failure: 5/7

Extra component: 11 cases (** four of them with high spin & low height **)

- Full: 0/8
- Fair: 6/8
- Undetermined: 1/8
- Failure: 4/8

⇒ General trend: the extreme cases, i.e. **high spin +** <u>small height</u>, are more likely to be a success.

High-resolution spectroscopy with ATHENA

IC I AA - Fauvra, vo june 2010