

LIOR ARAZI

BEN-GURION UNIVERSITY

ON BEHALF OF THE NEXT COLLABORATION

9<sup>th</sup> Symposium on Large TPCs for Large TPCs for Low-Energy Rare-Event Detection 12-14 December 2018, Paris



 $\rightarrow$  Need heroic background suppression at  $Q_{\beta\beta}$ 

### NEXT Neutrino Experiment with Xenon TPC

- Search for  $\beta\beta0\nu$  in <sup>136</sup>Xe in a *high pressure xenon gas* time projection chamber (TPC)
- Working in gas allows:
  - Excellent energy resolution (aiming at ~0.5% FWHM at Q<sub>ββ</sub>=2.458 MeV)
  - Track topology enables discriminating  $\gamma$ -induced electrons from  $\beta\beta$  events
- High pressure (10-15 bar) required to assemble enough mass in a reasonable volume
- Currently operating NEXT-White ( $\sim$ 10 kg of depleted Xe), moving to NEXT-100 (100 kg of Xe enriched to 91%  $^{136}$ Xe)
- Radiopure detector, running at Canfranc Underground Laboratory

#### **NEXT Concept**

S1 (PMTs) gives  $t_0$ 

S2 magnitude by proportional EL (PMTs) gives the event energy

S2 time-slice images (SiPMs) give the event topology



#### Energy resolution in Xe gas

The energy resolution, FWHM, is shown for  $^{137}$ Cs 662 keV  $\gamma$ -rays, as a function of xenon density, for the ionization signal only

A. Bolotnikov, B. Ramsey, Nucl. Instr. and Meth. A 396 (1997) 360



#### Topological signature

Bragg peak – 'blob' of dense ionization at the end of electron track



#### Blob-based background rejection





P. Ferrario, et al. (NEXT Collaboration), JHEP 1605 (2016) 159, arXiv:1507.05902

### Running prototype: NEXT-White (NEW) ~10 kg Xe



F. Monrabal et al. (NEXT collaboration), arXiv:1804.02409

#### Running prototype: NEXT-White (NEW) - 10 kg Xe









### Online 3D calibration maps with <sup>83m</sup>Kr: point-like 41.5 keV events throughout TPC volume



Geometrical S2 map

Electron lifetime map

Average 3.7 ms, ~7.5 times larger than max drift time

G. Martínez-Lema, et al. (NEXT collaboration) 2018 JINST 13 P10014, arXiv:1804.01780.

NEW: Calibration with "high-energy" sources





<sup>137</sup>Cs 662 keV

Extrapolates  $(1/\sqrt{E})$  to 0.61% FWHM at  $Q_{\beta\beta}$ 

 $^{208}$ Tl 1593 keV e<sup>+</sup>e<sup>-</sup> escape peak Extrapolates to 0.68% FWHM at  $Q_{\beta\beta}$ 

 $^{208}$ Tl 2615 keV full absorption peak Extrapolates to 0.85% FWHM at  $Q_{\beta\beta}$ 



J. Renner et al. (NEXT collaboration), 2018 JINST 13 P10020, arXiv:1808.01804.

#### Track topology in NEW



#### Beta emission from the cathode

P. Novella, et al. (NEXT collaboration) JHEP 1810 (2018) 112, arXiv:1804.00471



# Signal/background discrimination using blobs

<sup>208</sup>Tl escape peak events: MC and data



#### NEW: low-background run



#### NEW: low-background run



Data: x²=310.1/161
BF MC: 2.19±0.15
BF <sup>60</sup>Co: 3.70±0.22
BF <sup>40</sup>K: 0.76±0.12
BF <sup>214</sup>Bi: 2.08±0.34
BF <sup>205</sup>Ti: 1.86±0.58
BF <sup>136</sup>Xe: 1.00±0.00

10<sup>-9</sup>
10<sup>-9</sup>
1000
1500
2000
2500
3000
Energy (keV)

Data vs. expectation from nominal background model: overall rate ~2-fold larger than expected

Expectation from best-fit to data with isotope-specific scaling

Sources for discrepancy: lead castle paint and Rn-induced <sup>214</sup>Bi on cathode Discrepancy will go down when analyzing Run IVc

#### NEXT NEW step: enriched Xe for $\beta\beta2\nu$



#### NEXT-100 (construction in late 2019)



#### NEXT-100 expected sensitivity

Background:  $4 \cdot 10^{-4}$  counts/keV/kg/yr (~0.5-1 counts/100 kg/yr for 0.5-1% FWHM)

Dashed lines: largest and smallest estimations for the nuclear matrix elements

Similar sensitivity as KamLand-ZEN after ~4 years (remember NEXT-100 is a demonstrator for a ton-scale detector)



J. Martín-Albo, et al. (NEXT collaboration), JHEP (2016) 2016 159, arXiv:1511.09246

### NEXT on the ton-scale: Exploring the Inverted Hierarchy



- Plot shows the sensitivity of a 100% efficient xenon experiment (with a reasonable NME set and  $g_A=1.27$ )
- With a background ~10 counts/ ton/year and a mass of 1 ton, 10 years of run are required (e.g, ~30 years for an efficiency of 30 %).
- With a background count of ~1 counts/ton/year, only 2 years are required (6 years for an efficiency of 30%).

J. Martín-Albo Ph.D. thesis (2015), http://roderic.uv.es/handle/10550/41728

### Barium Tagging: towards "background free" experiment

Drastic reduction in gamma-induced background achievable by identifying the <sup>136</sup>Ba daughter

Basic idea – single molecule fluorescence imaging (SMFI)

- coat cathode with chelating molecules selective for barium ions (but not Xe).
- The molecules are non fluorescent in isolation and become fluorescent upon chelation.
- Interrogate cathode surface with a laser: a single molecule holding Ba fluoresces at a longer wavelength and is readily identified.

A. D. McDonald *et al.* (NEXT Collaboration), PRL **120**, 132504 (2018)

See talk by Ben Jones!



#### "Conventional" R&D

While barium tagging is being cooked, additional strategies must be developed to reduce background

Two main problems to tackle:

- Electron diffusion smears out track features
- PMTs at the energy plane still contribute radioactive background

The collaboration will investigate operation with xenon-helium mixtures at cryogenic temperatures with high-resolution tracking:

- Transverse electron diffusion in Xe-He is 5-fold smaller than in Xe, with no degradation of energy resolution
- $^{\circ}$  Low temperature operation will enable replacing PMTs with radiopure SiPMs for  $t_0$  and energy measurement (impossible at room temperature because of SiPM DCR)

### Electron diffusion in pure Xe: from "spaghetti with meatballs" to "sea cucumber"



Diffusion driven by elastic collisions with heavy xenon atoms

#### Electron diffusion in pure Xe-He (80/20)



Diffusion dominated by elastic collisions with the much lighter He atoms

R. Felkai, et al. (NEXT collaboration) Nucl. Instrum. Meth. A 905 (2018) 82, arXiv:1710.05600

#### Summary and outlook

The high-pressure Xe TPC has unique advantages, making it a leading candidate for the ton-scale  $0\nu\beta\beta$  search era

NEXT-White demonstrated superb energy resolution and effective track reconstruction on the 10-kg scale. Background is low and well understood.

NEXT-100 will demonstrate the technology on the 100-kg scale, providing competitive limits within a few years

The NEXT collaboration pursues promising directions for major background reduction, critical for the ton-scale detector: Ba tagging + topology improvement + higher radiopurity

### Backup slides

## Largest source of uncertainty: the size of axial coupling $g_A$

 $g_A = 1.269$  for weak interaction and decays of nucleons

Quenching effects inside the nucleus may considerably reduce  $g_A$ 

**Conservatively** one should consider several options:

$$g_A = \begin{cases} g_{nucleon} &= 1.269 \\ g_{quark} &= 1 \\ g_{phen.} &= g_{nucleon} \cdot A^{-0.18} \end{cases}$$

The degree of  $g_A$  quenching is unknown. The expression for  $g_{phen.}$  is based on  $2\nu\beta\beta$  half-lives and may be different for  $0\nu\beta\beta$ 

### Effect of uncertainty in $g_A$



For <sup>136</sup>Xe taking  $g_A=g_{phen}$  pushes up the limit on  $m_{\beta\beta}$  by a factor of  $\gtrsim 5$