

Muon Tomography with Micromegas:

Archaeology, Nuclear Safety and new developments for Geotechnics

D. Attie, D.Calvet, X Coppolani, B. Gallois, <u>H. Gómez</u>, M. Kebbiri, M. Lehuraux, P. Magnier, I. Mandjavidze, S. Procureur, M. Vandenbroucke

hector.gomez@cea.fr

9th TPC Symposium - 14/12/2018

Outline

- Muon tomography:
 - → General aspects
 - \rightarrow What do we need?
- A Micromegas-based muon telescope
 - → Autonomy, portability, stability ...
 - \rightarrow Some applications and results
- D3DT: A TPC for 3D muon tomography
 - \rightarrow Simulations and Analysis
 - → First Pre-Prototype and Results
- What is next?
- Summary and conclusions

- Use of the *atmospheric muons* for the scanning of the *internal structure of "big" objects* (from few meters to hundreds of meters scale)
- Main methods: Transmission

- Ratio between initial and final fluxes is directly related with **Opacity**
- Differences in final flux (after normalization) for different directions also points to Opacity differences
 - Precise knowledge of the atmospheric muons flux is advisable

Héctor Gómez - CEA / IRFU

General aspects

- Use of the *atmospheric muons* for the scanning of the *internal structure of "big" objects* (from few meters to hundreds of meters scale)
- Main methods: **Deviation**

• Muon trajectory deviation is related with the material density (Moliere Theory)

General aspects

• Comparing *initial vs final* directions for each point of the studied object, a mean deviation angle can be obtained, then a density map.

Mat.	Thickn.	δ (g/cm²)	θ (deg)	P _{abs}
Air	100 m	0.123	0.094	0.78 %
Water	1 m	1	0.35	2.9 %
Lead	10 cm	113	1.01	4.2 %
Soil	100 m	230	-	99 %

Faster

For smaller objects with no big opacities

14/12/2018

General aspects

- Cheap, *non-invasive*, *versatile*, hazard-less imaging method.
- Specially interesting for big objects

Nuclear control and safety

Homeland security

What do we need?

Muon tomography requires:

- Reconstruct muon track direction
- Continuously operates over ~months
- Operates @ studied object location
 - Outside
 - Varying environmental conditions

Muon telescope must be / have:

- Excellent angular resolution
- Performing and robust technology-based
- Portable
- Autonomous
- Protected from environment

A Micromegas-based muon telescope

Detectors

- \rightarrow 1/34 lines reduction
 - → Simpler DAQ

14/12/2018

Charge Diffusion

Héctor Gómez - CEA / IRFU

 \rightarrow Better 2D spatial resolution

→ Multiplexing possibility

A Micromegas-based muon telescope

Autonomy / Portability

- Light materials: Aluminium structure, plastic case ...
- Reduced size with low power consumption DAQ components
 - Miniaturized ASIC and HV modules
 - ~35 W power consumption (solar panels, batteries...)
- Auto-tunable gain → Stability
- Hummingbird nano-pc (as your smartphone) \rightarrow Online analysis
- 3G/4G connection for remote control and data transfer

14/12/2018

A Micromegas-based muon telescope

Some Results

WatTo → NIM A 834 (2016) 223 - 228

- Scanning of "Chateau d'eau" @ Saclay (2015)
- First outdoor measurement: Proof of concept
- Capable to monitor water level

ScanPyramids → Nature 552 (2017) 386 -390

- Scanning of Khufu's Pyramid
- Discovery of a void over Grand Gallery
- Ongoing measurements for more information

G2G3 → https://doi.org/10.1016/j.nima.2018.10.011

- Scanning of Nuclear Reactors @ CEA Marcoule
- Feasibility studies by MC simulation (Geant4)
- Development of a devoted simulation framework

14/12/2018

9th SYMPOSIUM ON LARGE TPCs FOR LOW-ENERGY RARE EVENT DETECTION

We didn't say a word about TPC's so far....

A TPC for 3D Muon Tomography

- Components:
 - Cylindrical TPC (~40 cm long, 15 cm Ø)
 - Readout by circular Micromegas with 2D pads multiplexed \rightarrow 1344 pads to 192 (3 x 64) lines

Measurement coverage $\Omega = 2\pi$ with a single detector

3D resolution with a detector network

- TPC placed at the bottom of a borehole
- Scanning by muography of the surroundings
- Possible applications:
 - Mining exploration
 - Geothermal fields sounding
 - Civil engineering (tunnels ...)
 - Monitoring: buildings, dykes, bridges
 - Geophysics ?

14/12/2018

A TPC for 3D Muon Tomography

- Components:
 - Cylindrical TPC (~40 cm long, 15 cm Ø)
 - Readout by circular Micromegas with 2D pads multiplexed \rightarrow 1344 pads to 192 (3 x 64) lines

Measurement coverage $\Omega = 2\pi$ with a single detector

3D resolution with a detector network

14/12/2018

2D Multiplexed Micromegas

14/12/2018

2D Multiplexed Micromegas

12 layers PCB: 3.2 mm thick

Simulations and Analysis

- Preliminary simulations:
 - · Rough demonstration of the potential with a single detector
 - More precise studies depending on the upcoming projects

Comparison between simulations with (1) and without (2) cavities

Or direct analysis of "raw measurements"

14/12/2018

Simulations and Analysis

Raw simulation without cavities

- Preliminary simulations:
 - Rough demonstration of the potential with a single detector •
 - More precise studies depending on the upcoming projects ٠

Raw simulation with cavities

Simulated events corresponding to ~1 month measurement

- Preliminary simulations:
 - Rough demonstration of the potential with a single detector
 - More precise studies depending on the upcoming projects

14/12/2018

Héctor Gómez - CEA / IRFU

Excess of muons

Simulations and Analysis

• Analysis of the "Raw measurements"

• Plot of "displacement" of a muon @ TPC rather than incident angles

First Pre-Prototype and Results

- For fast test of Micromegas performance
 - Drift volume: 12 cm Ø; 3 cm length
 - No field cage

First Pre-Prototype and Results

- First Data Taking
 - Ar $-iC_4H_{10} CF_4$ (95:2:3) @ P_{atm}
 - V Cathode = -1000 V
 - V Mesh = -380 -400 V
 - Detector Vertical and Horizontal

Data taken between 7/12/18 and 10/12/18

First Pre-Prototype and Results

Vertical mMs; Vmesh = -380 V; Vdrift = -1000 V

14/12/2018

First Pre-Prototype and Results

Vertical mMs; Vmesh = -380 V; Vdrift = -1000 V

14/12/2018

First Pre-Prototype and Results

• 6 x 7 = 42 fired pixels

Preliminary

Raw Signals

No pedestal subtraction

- **1** "long track" identified (5 pixels length) $\rightarrow (\Delta x^2 + \Delta y^2)^{1/2} \sim 15 \text{ mm}$
- **11 time samples** (~ 440 ns) time difference $\rightarrow \Delta z \sim 30 \text{ mm}$

First Pre-Prototype and Results

Preliminary

Raw Signals

No pedestal subtraction

• 8 signals over threshold @ ASIC#1

- $8 \times 7 = 56$ fired pixels
- **1** "long track" identified (8 pixels length) $\rightarrow (\Delta x^2 + \Delta y^2)^{1/2} \sim 18 \text{ mm}$
- 9 time samples (~ 360 ns) time difference $\rightarrow \Delta z \sim 25 \text{ mm}$

14/12/2018

What is next?

Detectors and measurements:

- Design and construction of a "Laboratory" prototype
 - First measurements as Proof of Concept
- Conception and construction of a TPC for "on-site" measurements
 - New design of ancillary systems as DAQ

Simulations and analysis:

٠

- Sensitivity studies with a single TPC:
 - What kind of anomalies/defaults can we see (and in how much time) depending on:
 - \rightarrow Size, detector depth, relative position, density differences...
- Simulations corresponding to the performed measurements
- Simulations measurements with a TPC network:
 - Development of 3D analysis by image combination \rightarrow *Muon Tomography*
- Development of track identification and reconstruction algorithms \rightarrow Resolution studies
 - Azimuth angle \rightarrow Triggered Micromegas Pads
 - Zenith angle (relative) \rightarrow Registered pulses time

14/12/2018

Summary and conclusions

- Muon tomography reveals as an interesting method for the internal scanning of big objects
 - Cheap, non-invasive, versatile, hazard-less ongoing

- Among the different techniques to carry out the measurements, Micromegas-based telescopes stand out to carry out the measurements
 - Already successfully used in different projects

- New generation of telescopes is being developed \rightarrow **D3DT**
 - TPC readout by a 2D multiplexed micromegas
 - New applications possible
 - More news soon

14/12/2018