

Darkside: the quest for Dark Matter with Liquid Argon

Claudio Giganti (on behalf of the DarkSide Collaboration)

9th Symposium Large TPCs for low-energy rare event detection

DarkSide-50

*****Direct detection of WIMPs

Experiment installed underground in the Gran Sasso Laboratory

*****Double phase TPC with 50 kg of liquid Argon

Liquid Scintillator veto (30 ton PC+PPO+TMB)

*****Water Cherenkov veto

Background reduction Underground Argon Low background materials Active Shields

Background identification Pulse Shape Discrimination S1/S2 discrimination Measure neutrons in veto

Demonstrate the potential of the technology for multi ton background-free detector

Principles double Phase TPC

***WIMP scattering on LAr nuclei**

*****Primary scintillation photons emitted and detected on PMTs : S1

*Electrons drift towards the top of the TPC and are extracted in the gas phase where they are accelerated, emitting secondary light : S2

3

DarkSide TPC

Gaseous Argon

36 cm diameter 36 cm high ~50 Kg fiducial

LAI

19 PMTs (3") **Extraction grid** 2.8 kV/cm extraction field 200 V/cm drift field 19 PMTs (3")

Underground Argon

Underground argon is naturally depleted from ³⁹Ar (β-emitter with activity of ~1 Bq/kg in AAr and end-point of 560 keV)

³⁹Ar depletion factor of 1400 (0.7 mBq/kg) ⁸⁵Kr measured from β - γ coincidences in ⁸⁵Kr \rightarrow ⁸⁵Rb decay

Pulse shape discrimination in LAr

DarkSide-50 AAr: ~2 ton x day UAr: ~7 ton x year DEAP-3600 AAr: 4 ton x day UAr: 15 ton x year

Projected discrimination power >10⁹

Assuming 1400 depletion factor

Argon as a target

High Mass WIMPs

Range 45 - 200 keVnr

*****S1 and S2 signal

*****Excellent PSD → background free

~38 keV_r Atmospheric Argon $\sim 206 \text{ keV}_r$ £ 90 35000 WIMP Expected Region 0.9 0 event observed 0.8 30000 65% 80% 90% 0.7 25000 0.6 20000 0.5 0.4 15000 0.3 10000 10^7 events of ³⁹Ar 0.2 5000 0. 0 150 200 250 300 350 400 450 S1 [PE]

Low Mass WIMPs

Range 0.7 - 15 keVnr

Constantion Second Second

Lighter nucleus → larger recoil energy

High mass WIMPs analysis

*Blinding box (red outline) shown with 71-day data: PRD 93, 081101 (2016)

*Goal: design an analysis that will have <0.1 event of background in the tobe-designed search box. (Final box chosen: dashed red)

Nuclear Recoil Backgrounds

Neutrons

- Water Cherenkov to tag cosmogenic neutrons
- Radiogenics: LS Veto and multi-scatter events in the TPC
- LSV Tagging efficiency with Am-C source for TPC single-NR: 0.9964±0.0004

Neutrons are counted to confirm prediction

10

Surface a decays

Small fraction at low energies

Self-vetoing with DS-50

- Small or no S2
- Long tails from TPB fluorescence

Electron Recoil backgrounds

*****ER negligible thanks to PSD in LAr

Cherenkov background is the dominant background → cuts developed to reduce it

11

*****Total expected background < 0.1 events \rightarrow open the box!

Background	Events surviving all cuts
Surface Type 1	0.0006 ± 0.0001
Surface Type 2	0.00092 ± 0.00004
Radiogenic neutrons	< 0.005
Cosmogenic neutrons	< 0.00035
Electron recoil	0.08 ± 0.04
Total	0.09 ± 0.04

Cherenkov prompt light \rightarrow increase f90

Unblinding

12

Final Data Set

LAr for low mass WIMPs

***** LAr has always been considered as a target for heavy WIMPs

- * Need S1 signal for Pulse Shape Discrimination
- S1 threshold at E~2 keVee → ~6 keVnr
- Ionization signal (S2) has a much lower threshold → Sensitive to 1 e- → 23 PE/e-
- Data selection: require the PMT with most of S2 light to be one of the central PMTs

***** Look at f90 \rightarrow S2 light is slow \rightarrow small f90

Electron recoil energy scale

- Difference due to the presence at the begin of the data taking of ³⁷Ar
- Two x-rays at 2.82 keV and at 0.27 keV
- *****35 days of half-life → disappear after first 100 days
- *****Excellent calibration source
 - *****0.27 keV → S2-only region
 - *2.82 keV \rightarrow S1+S2 region
- *****Expected branching ratio 0.10
- *****Fitted BR = 0.11±0.01

 $E = 0.27 \text{ keV} \rightarrow \text{Ne} = 11$ $E = 2.8 \text{ keV} \rightarrow \text{Ne} = 47.9$ Combined with ^{83m}Kr at 41 keV \rightarrow ER energy scale

NR energy scale (AmBe/AmC)

→ Use DS-50 MC to fit AmBe and AmC data → in-situ measurement of the ionization model for NR

*****AmBe emits neutrons + 0, 1, 2 γ

- Neutrons in the TPC selected in coincidence with one γ in the veto
- ★Unfortunately the coincidence doesn't work well for S2-only data because the event in the veto arrive earlier than S2 → efficiency 7/430

- AmC emits neutrons or gamma but the source is weaker
- *****No coincidence with the veto
 - Only take 4 central PMTs far away from the source
- *Low statistics and some γ background expected in the TPC \rightarrow estimated from MC and verified with higher energy γ

The ARIS experiment @ IPN Orsay

12 days of data taking at ALTO@IPNO in 2016

*Use LICORNE neutron source *Pulsed (1.5 ns) *Collimated *Monochromatic (En~1.5 MeV) *Also emits 478 keV gammas *Measure scintillation yield for ER and NR *Measure quenching in the [7,120] keVnr range *Full description of recombination for ER and NR

ARIS results

No field

With field

*****Use these measurements to obtain the expected ionization yield in DS-50

$$S2_{DS50}(E_{nr}) = L_{eff} * S1^{200V}/S1^{0V} * E_{nr} * LY_{DS50} * (S2/S1)_{DS50}$$

Low mass: NR energy scale

*****Good agreement between internal and external calibration

*Measured a ionization yield of 6 e-/keV_{nr} at 1 keV_{nr}

Backgrounds

Energy scale for NR

*Ne<4 (E<0.7 keVnr) → dominated by single electrons → not used in the analysis

***Ne>=7** \rightarrow background reproduced by MC

***** Dominated by 85 Kr+ 39 Ar \rightarrow easy to reduce further reduce

 $4 < Ne < 7 \rightarrow excess of data with respect to MC \rightarrow under investigation$

90% C.L. Exclusion Limits

Profile Likelihood → include uncertainties from WIMP signals (NR ionization yield, single electron yields) and backgrounds

Improve limits by ~1 order of magnitude in the region below 6 GeV

Sub-GeV DM

☆Light DM scatter off electrons → DM signal is ER

*****Use same spectrum and two different form factors

Global Argon DM collaboration

23

DarkSide-20k new design

Silicon PhotoMultipiers

	DS-20k requirement	SiPM tile (PDM)	
Surface ~5k C	hannels 5x5cm²	24cm ² prototype 25cm ² final PDM	1
Power dissipation	<250mW	~170mW	1
PDE	>40%	$50\% \cdot \epsilon_{geom} = 45\%$	1
Noise Rate	<0.1cps/mm ²	0.004cps/mm ²	1
Time Resolution	for f ₉₀ 0 (10ns)	16ns	1
Dynamic Range	>50	~100	1

³⁹Ar depletion

URANIA : will extract 250 kg/day UAr

Additional ³⁹Ar depletion with ARIA (x10 per pass)

A Proto-DUNE cryostat as veto

Remove the main sources of neutron background (from PMTs and cryostat) No need for UAr between TPC and cryostat → large active mass

Less than 0.1 expected background events in 100 ton x year exposure **Outer Active veto (LAr)**

Passive plastic shell

Inner Active veto (LAr)

Electronics and mechanics

Acrylic TPC walls

TPC

DS-Proto → DS-LM

*1 ton prototype being constructed at CERN to test DS-20k technology (SiPM, electronics, cryogenics)

*Possibility to install it at LNGS to search for low-mass WIMPs under discussion

Improve DS-50 sensitivity by 2-3 order of magnitudes (depending on residual ³⁹Ar activity and SiPM background)

Towards the neutrino floor

Conclusions

DarkSide-50 is a very successful detector

***** Background-free search for high mass WIMPs → pave the way to DS-20k

Best world sensitivity for low mass WIMPs (1.8 - 6 GeV/c²)

*For the future a Global Program for Direct Dark Matter Searches is established

Currently taking data: DarkSide-50, ArDM and DEAP-3600

Next step: DarkSide-20k @ LNGS (starting in 2022)

Final goal: 300 ton LAr observatory for Dark Matter and Neutrinos