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Optical readout of GEM-based detectors

(Gaseous

emitted during electron avalanche multiplication with CCD or CMOS cameras.

Avalanche multiplication in GEM

Incoming p* /

-
v
.

t=0.05ns

e Electrons
* lONs

Y Y Y 6

Schematics not drawn to scale

—lectron Multipliers (GEMs) can be read out by recording secondary scintillation light

Secondary scintillation spectra of gas mixtures containing Ck4
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Optical readout

Integrated imaqging approach
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Transparent readout anodes

Combined optical and electronic readout



Optically read out TPC CCD +
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Optically read out TPC CCD + Electronic
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Indium tin oxide (ITO) for transparent anodes
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I'TO pad anode

25 pads with 2x2 cmz2
25 nm ITO on 1.1 mm glass

Structured by direct laser lithography and
etching in HCI

Sheet resistance of 100 Q/sg

View into GEM-based TPC (10x10 cm2 active area) as
seen by camera with ITO pattern shown in red overlay
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I'TO pad anode + CCD images reconstruction
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ITO strip anode

48 strips: 1.5 mm wide at 2 mm pitch

450 nm ITO on glass

Structured by direct laser lithography and etching in 32%

HCI

Sheet resistance o

-4 ()/sq results in resistance of =400 Q)

across Individual s

anode

o 27t

11

rps

~lectronic readout of individual strips of ITO

by APV25 ASIC and RD51 Scalable

Readout System (SRS)

me bins with 25 ns width
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Combined optical and electronic readout
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Combining Z with XY-information
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Reconstructed alpha tracks
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Reconstructed alpha tracks
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Reconstructed cosmic events

ITO strip signals
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Reconstructed cosmic events

ITO strip signals
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Optical TPC readout with
ultra-tast CMOS cameras
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Optical readout

Integrated imaging approach
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Optical readout

Integrated imaging approach

Intuitive pixelated readout with
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Ultra-tast CMOS cameras

QImaging Retiga R6

6 MP CCD

e 7 Hz frame rate (6 MP)

* tens of Hz (lower resolution)
* 5.7 e-read noise

Hamamatsu ImagEM
X2-1K EMCCD camera

1 megapixel EMCCD sensor

* 1200x EM galin

18.5 fps at 1024x1024
288 fps at 4x4 16px wide
<1 e- readout noise

Ultra-fast CMOS cameras

Photron FASTCAM SA-Z

Phantom v2512

* 1 megapixel CMOS sensor
e 12 bit depth

* 20 kfps at 1024x1024

* 2.1 Mfps at 128x8

* |SO 50,000 sensitivity

1 megapixel CMOS sensor
12 bit depth

25 kfps at 1280 x 800

1 Mfps at 128x32

ISO 100,000 sensitivity
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Optical readout scintillation spectra

Using CFs-based gas mixtures Using wavelength shifters
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Ar/CF4 gas mixtures feature ample visible Wavelength shifters such as tetraphenyl butadiene
scintillation light emission with a peak (TPB) can be used to shift scintillation light
around 630 nm spectrum to visible range with peak around 425 nm
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Optically read out TPC CCD + PMT
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Optically read out TPC Ultra-fast CMOS
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Optically read out TPC Ultra-fast CMOS
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Optically read out TPC Ultra-fast CMOS

Field shaper Stack of 4 GEMs

High-speed
camera

Recorded with 10 V/cm drift field corresponding to =0.5 cm/us in Ar/CF4
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Optically read out TPC Ultra-fast CMOS

Field shaper Stack of 4 GEMs

High-speed
camera

-_\-‘._‘ “

Recorded with 10 V/cm drift field corresponding to =0.5 cm/us in Ar/CF4 3D alpha track reconstruction
Schematics not drawn to scale (schematic)
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Conclusions

3D track reconstruction in TPCs with CCD or CMOS camera used to readout scintillation light relies on S1
and S2 information from PMT for Z-coordinate.

Combined optical and electronic readout with transparent, structured anodes can be used for

reconstruction of intricate particle tracks. This preserves advantage of high-granularity pixelated readout
with cameras with the addition of relative depth information from electronic signals.

Ultra-fast CMOS cameras enable 3D track reconstruction from seguences images acquired with S
intervals without the need for extensive reconstruction algorithms.

While currently available frame rates of Mfps do not offer good depth resolution for gaseous electron-drift
TPCs, they might be applicable for LAr or LXe TPCs or negative-ion TPCs.
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