Ninth International Symposium on Large TPCs for low-energy rare event detection

Global analysis of neutrino oscillation parameters

Antonio Marrone - U. of Bari & INFN

12-14 December 2018, Diderot University, Paris

Open questions in neutrino Physics

- Dirac/Majorana nature of neutrinos
- Absolute masses
- CP violation
- Mass Ordering
- Sterile neutrinos
- Nonstantard interactions

The knowledge of mass-mixing oscillation parameters can help to answer these questions

In this talk \longrightarrow status of parameter determination from global analyses with focus on θ_{23} , δ and mass ordering

Based on Bari group, Prog.Part.Nucl.Phys. 102 (2018) 48-72

Precision era in neutrino oscillation phenomenology

Standard 3v mass-mixing framework parameters

	What we still do not know
What we known	CP-violating phase δ
δm^2 2.2%	Octant of θ_{23}
Δm^2 1.4%	Mass Ordering $\rightarrow \operatorname{sign}(\Delta m^2)$
$\sin^2 \theta_{12}$ 4.4%	$\Delta m^2 = (\Delta m^2_{13} + \Delta m^2_{23})/2$
$\sin^2 heta_{13}$ 3.8%	Normal Inverted Ordering Ordering
$\sin^2 heta_{23}$ 5.2%	$+\Delta m^2$ IO
	ν_2

 ν_3

NO

 $-\Delta m^2$

To understand how bounds on the oscillation parameter arise it is useful to look at their correlations and to consider the progressive contribution of different data sets:

(1) LBL acc + Solar + KamLAND

Solar + KL data provide the necessary input for $(\delta m^2, \theta_{12})$, but also independent –although weak– constraints on θ_{13} . The data set (1) provides, by itself, a measurement of θ_{13} .

(2) LBL acc + Solar + KamLAND + SBL Reactors

SBL reactors not only provide the most accurate determination of θ_{13} but also an independent determination of Δm^2

(3) LBL acc + Solar + KamLAND + SBL Reactors + Atmospheric

Atmospheric neutrino data (SK + DeepCore) sensitive in different ways to all the oscillation parameters via disappearance and appearance channels. Because of matter effects they depends on all parameters in the 3v framework, but dominantly on (Δm^2 , θ_{23})

Mass Differences

 $\Delta m^2 = (\Delta m^2_{13} + \Delta m^2_{23})/2$

Mass Ordering = sign of Δm^2

Squared mass differences have both lower and upper bounds at more than 30

Nearly Gaussian uncertainties for Δm^2 and to a lesser extent for δm^2

Neutrino 2018 updates (still not included)

Mixing Angles

NOVA and MINOS prefer nonmaximal mixing

θ_{23} octant ambiguity

Slight preference for $\theta_{23} < \pi/4$ in NO and $\theta_{23} > \pi/4$ in IO, but both octants are allowed at 1σ

Slight preference for $\theta_{23} < \pi/4$ in NO and $\theta_{23} > \pi/4$ in IO, but both octants are allowed at 1σ

The octant ambiguity of θ_{23} stays unresolved, but there is a weak preference for $\theta_{23} > \pi/4$, especially for IO

Slight preference for $\theta_{23} < \pi/4$ in NO and $\theta_{23} > \pi/4$ in IO, but both octants are allowed at 1σ

> The octant ambiguity of θ_{23} stays unresolved, but there is a weak preference for $\theta_{23} > \pi/4$, especially for IO More pronounced preference for $\theta_{23} > \pi/4$ but both octants allowed at < 2σ .

Slight preference for $\theta_{23} < \pi/4$ in NO and $\theta_{23} > \pi/4$ in IO, but both octants are allowed at 1σ

> The octant ambiguity of θ_{23} stays unresolved, but there is a weak preference for $\theta_{23} > \pi/4$, especially for IO More pronounced preference for $\theta_{23} > \pi/4$ but both octants allowed at < 20.

Globally, relatively low uncertainty of ~5% on sin²0₂₃ (NOVA data in better agreement with quasi-maximal mixing). Maximal mixing allowed at less than 20 in both NO and IO (but Neutrino 2018 NOVA analysis prefers again nonmaximal mixing)

CP phase δ

Significance (a)

CP phase: $\delta \sim 1.3\pi (1.5\pi)$ at best fit CP-conserving cases ($\delta = 0, \pi$) disfavoured at ~20 level or more Significant fraction of the $[0,\pi]$ range disfavoured at >30 in NO, at >40 in IO

•

٠

interactions modelling

CP phase δ

CP-conserving values $\delta = \{0,\pi\}$ allowed at ~2 σ (3 σ) in NO (IO). Clear preference $\delta \sim 3\pi/2$. $\delta \sim \pi/2$ disfavoured at more than 3σ

CP-conserving values $\delta = \{0,\pi\}$ allowed at ~20 (30) in NO (IO). Clear preference $\delta - 3\pi/2$. $\delta - \pi/2$ disfavoured at more than 30

Indications on $\delta \sim 3\pi/2$ strengthened. CP-conserving values disfavoured at >1.80 in NO and > 30 in IO. Significant ranges excluded at > 30 in both NO and IO.

CP-conserving values $\delta = \{0,\pi\}$ allowed at -2σ (3 σ) in NO (IO). Clear preference $\delta - 3\pi/2$. $\delta - \pi/2$ disfavoured at more than 3 σ

Indications on $\delta \sim 3\pi/2$ strengthened. CP-conserving values disfavoured at >1.80 in NO and > 30 in IO. Significant ranges excluded at > 30 in both NO and IO.

Preference for CP violation with $\sin\delta < 0$ confirmed, while CP conservation is disfavoured at >1.90 for NO and >3.50 for IO.

CP-conserving values $\delta = \{0, \pi\}$ allowed at -2σ (3 σ) in NO (IO). Clear preference $\delta - 3\pi/2$. $\delta - \pi/2$ disfavoured at more than 3 σ

Indications on $\delta \sim 3\pi/2$ strengthened. CP-conserving values disfavoured at >1.80 in NO and > 30 in IO. Significant ranges excluded at > 30 in both NO and IO.

Preference for CP violation with $\sin\delta < 0$ confirmed, while CP conservation is disfavoured at >1.90 for NO and >3.50 for IO.

"Effective" 10 accuracy of ~15% in NO and ~9% in IO. Rejection of the CP-conserving case $\delta=0$ at 30 in NO, but not enough to exclude $\delta=\pi$ at 20. Both cases excluded at 30 in IO.

Comparison of global analyses

update, included in NuFit)

Comparison of global analyses

update, included in NuFit)

2.9

10-15% "Determination" of δ

Mass Ordering: present situation

	L	.BL + Solar + 1	(L (+ SBL)	(+AEm)	
	$\Delta \chi^2_{\rm IO-NO}$	+1.3	+4.4	+9.5	
@Neutrino 2018		rino 2018	T2K - preference for NO $\Delta \chi^2_{10-N0} \sim 4$		
			NOVA - weat NO, $\Delta \chi^2$ 10-NO $'$	k preference fo ~ 1.3	>r
	Other gra	oups findings			
http:/	/www.nu-fit.or	<u>g/</u>	$\Delta \chi^2_{\rm IO-NO} =$: +9.3 (4.7, NO	SK)
M. To	rtola <i>eneutrin</i>	0 2018	$\therefore \Delta \chi^2_{10-N0} =$	11.7	

	$\Delta \chi^2$ 10-NO	Νσ
Bari	9.5	3.1
NuFit	9.1	3.0
Valencia	11.7	3.4

NO favoured over IO at about 3 sigma level

We include the latest low-energy Borexino and SK-IV data

Many input updated. Ga neutrino absorption cross-section leads to a reduction of the unoscillated solar neutrino rate by ~ 6 SNU

Slightly decrease of θ_{12} and increase of δm_2 for nonzero θ_{13}

slight tension between the preferred mass-mixing value

$$\Delta \chi^2 = \chi^2_{\rm sol+KL} - (\chi^2_{\rm sol} + \chi^2_{\rm KL}) \sim 2$$

Solar Neutrinos + KamLAND

Solar neutrino contours would be slightly different in IO, shifted leftwards with $\delta(\sin 2 \ \theta 12) = -0.02$ to compensate the slightly higher survival probability for IO as compared to NO. In combination with (mass-ordering insensitive) KamLAND data, the overall shift of the best-fit mixing angle amounts to $\delta(\sin 2 \ \theta 12) = -0.01$ $\Delta \chi 2 = 0.08$ in favor of IO with respect to NO

In LBL accelerator θ_{23} and θ_{13} are anticorrelated via appearance data

In LBL accelerator θ_{23} and θ_{13} are anticorrelated via appearance data

Subleading effects sensitive to sign(Δm^2) generate a difference in the allowed θ_{13} ranges for NO and IO, the latter ones being generally higher. $\Delta \chi^2$ increases from 1.3 to 4.4

In LBL accelerator θ_{23} and θ_{13} are anticorrelated via appearance data

Subleading effects sensitive to sign(Δm^2) generate a difference in the allowed θ_{13} ranges for NO and IO, the latter ones being generally higher. $\Delta \chi^2$ increases from 1.3 to 4.4

SBL reactor data: θ_{13} are more consistent in NO than in IO

In LBL accelerator θ_{23} and θ_{13} are anticorrelated via appearance data

Subleading effects sensitive to sign(Δm^2) generate a difference in the allowed θ_{13} ranges for NO and IO, the latter ones being generally higher. $\Delta \chi^2$ increases from 1.3 to 4.4

SBL reactor data: θ_{13} are more consistent in NO than in IO

Atmospheric neutrino data do not improve θ_{13} but sensitive to the mass ordering. $\Delta \chi^2$ increment from 4.4 to 9.5

In LBL accelerator θ_{23} and θ_{13} are anticorrelated via appearance data

Subleading effects sensitive to sign(Δm^2) generate a difference in the allowed θ_{13} ranges for NO and IO, the latter ones being generally higher. $\Delta \chi^2$ increases from 1.3 to 4.4

SBL reactor data: θ_{13} are more consistent in NO than in IO

Atmospheric neutrino data do not improve θ_{13} but sensitive to the mass ordering. $\Delta \chi^2$ increment from 4.4 to 9.5

In LBL accelerator θ_{23} and θ_{13} are anticorrelated via appearance data

Subleading effects sensitive to sign(Δm^2) generate a difference in the allowed θ_{13} ranges for NO and IO, the latter ones being generally higher. $\Delta \chi^2$ increases from 1.3 to 4.4

SBL reactor data: θ_{13} are more consistent in NO than in IO

Atmospheric neutrino data do not improve θ_{13} but sensitive to the mass ordering. $\Delta \chi^2$ increment from 4.4 to 9.5

Very good consistency of all the data on Δm^2 , whose best-fit value remains practically constant in the three upper panels.

Very good consistency of all the data on Δm^2 , whose best-fit value remains practically constant in the three upper panels.

 Δm^2 slightly increases in IO after the addition of SBL reactor data as consequence of the slight increment in sin² θ_{23}

Very good consistency of all the data on Δm^2 , whose best-fit value remains practically constant in the three upper panels.

 Δm^2 slightly increases in IO after the addition of SBL reactor data as consequence of the slight increment in sin² θ_{23}

The small increase of Δm^2 slightly worsen the agreement with IC-DC data -> small contribution to $\Delta \chi^2$ (about one unit) favoring NO

Very good consistency of all the data on Δm^2 , whose best-fit value remains practically constant in the three upper panels.

 Δm^2 slightly increases in IO after the addition of SBL reactor data as consequence of the slight increment in sin² θ_{23}

The small increase of Δm^2 slightly worsen the agreement with IC-DC data -> small contribution to $\Delta \chi^2$ (about one unit) favoring NO

In general, at nearly maximal mixing one gets the lowest allowed values of Δm^2 , while for nonmaximal mixing (in either octants) the preferred values of Δm^2 increases. Correlation mainly from disappearance data in LBL where a decrease of the leading oscillation amplitude governed by sin² 2023 can be compensated by an increase of the leading oscillations phase governed by Am2

Strong correlations (in the left panels) mainly induced by the interplay between δ and θ_{13} in the subleading terms of the appearance probability for LBL experiments

Strong correlations (in the left panels) mainly induced by the interplay between δ and θ_{13} in the subleading terms of the appearance probability for LBL experiments

In NO, the best fit of δ remains very close to \sim 1.37 by adding first SBL reactor and then atmospheric neutrino data

Strong correlations (in the left panels) mainly induced by the interplay between δ and θ_{13} in the subleading terms of the appearance probability for LBL experiments

In NO, the best fit of δ remains very close to \sim 1.37 by adding first SBL reactor and then atmospheric neutrino data

Consistency of all the datasets towards the same best-fit values of both the Δm^2 , θ_{23} , θ_{13} and δ

Strong correlations (in the left panels) mainly induced by the interplay between δ and θ_{13} in the subleading terms of the appearance probability for LBL experiments

In NO, the best fit of δ remains very close to \sim 1.37 by adding first SBL reactor and then atmospheric neutrino data

Consistency of all the datasets towards the same best-fit values of both the Δm^2 , θ_{23} , θ_{13} and δ

In IO there is a slight decrease of δ from left to middle panels, correlated to the decrease of θ 13.

Conclusions

- Ranges of well-known 3v parameters $(\delta m^2, \theta_{12}) \& (\Delta m^2, \theta_{13})$ confirmed by v2017-8 data updates
- CPV: sinδ<0 preferred

best fit: $\delta/\pi \sim 1.3-1.4 \pm 0.2$ (10) $\delta \sim 0$ (π) disfavoured at 2σ (3σ) sin $\delta \sim +1$ disfavoured at > 4σ

- Octant info: $\theta_{23} > \pi/2$, but still fragile
- Mass Ordering: IO disfavored by oscillation data: LBL+Sol+KL +SBL +ATM
 Δχ²(IO-NO) 1.3 4.4 9.5
 (Non oscillation data corroborate NO)
- Info from ongoing near future experiments