

Characterisation of Gas Properties in a Spherical Proportional Counter

Philippe Gros for the NEWS-G collaboration Queen's University, Canada

9th Symposium on Large TPCs for Low-Energy Rare Event Detection Paris, France

- Spherical proportional Counters
- Experimental setup with UV laser
- Analysis of Single Electron Response
- Extraction of Gas Properties

Spherical Proportional Counters (SPC)

- Gaseous proportional counter
 - Metal sphere
 - Central ball with HV
- Very low capacitance
 - <1pF
- Drifting electrons from ionisation
- Light gas optimal for low mass WIMPs
- 1 channel, 1 HV
 - drift and amplification fields linked

Characterisation of Gas Properties in SPCs 9th TPC Symposium, Paris Philippe Gros, Queen's Univesity

30 cm Ø Stainless Steel

Experimental Setup

- Characterization of the SPC response down to <u>single electrons</u> (SER)
 - Precision measurements of the avalanche gain
 - Drift time, Diffusion time, W-value and Fano Factor measurements
 - Monitoring of the stability of the detector response during WIMP search runs
 - Experimental measurement of the trigger threshold efficiency

Analysis Methodology

- Single electron response
- Polya distribution (<G>, θ) $P_{Polya}(X) = \frac{1}{\langle G \rangle} \frac{\cdot (1+\theta)^{1+\theta}}{\Gamma(1+\theta)} \left(\frac{X}{\langle G \rangle}\right)^{\theta} \exp\left(-(1+\theta)\frac{X}{\langle G \rangle}\right)$
 - non correlated (true for low signal)
 - N electrons \rightarrow Nth convolution of Polya
 - N photo electrons
 - Poisson distribution (μ)

Fitting Data

- Data triggered on photodetector
 - includes null events
 - slices of +- 5% laser
 intensity (PD signal)
- 4 parameters: $\langle G \rangle$, θ , μ , σ_{Noise}
- Binned likelihood fit
 - single intensity slices
 - joint fit (multiple μ values)

Characterisation of Gas Properties in SPCs 9th TPC Symposium, Paris Philippe Gros, Queen's Univesity

Philippe Gros, Queen's Univesity

2018-12-14

7/21

SER Characterisation

- Experimental condition
 - Ne:CH4 (98:2) at 1.5 bar
 - HV from 1100 V to 1250V \rightarrow Gains 103 104
 - UV-pulsed Laser (10 Hz) + 37Ar (~15 Hz)
- Results
 - SER close to exponential (Fury) law $\theta \sim (0.10 \pm 0.05)$
 - Gain consistent within 1% between runs in same conditions
 - Relative gain variance

$$f = \frac{1}{1 + \theta} \sim (0.91 \pm 0.04)$$

W-value from ³⁷Ar

- Simultaneous measurement of 37Ar
 - 2.83keV and 270eV Xrays
 - similar rate to laser

Philippe Gros, Queen's Univesity

W-value from ³⁷Ar

• W-value = mean energy to create e⁻-ion pair

		Gain [ADU]		W value (2820 eV)	
Run	Voltage	measure	uncertainty	measure	uncertainty
sj26g002a	1200	31.01	0.39	26.73	0.50
sj26g002b	1200	32.44	0.58	27.70	0.56
sj26g002c	1200	32.65	0.44	27.80	0.48
sj26g002d	1200	32.66	0.38	27.86	0.41
sj25g002a	1200	31.20	0.48	27.56	0.52
sj25g002b	1200	31.96	0.50	27.81	0.59
sj21g000a	1100	8.88	0.60	25.87	1.77
sj21g000b	1100	9.03	0.60	26.20	1.76
sj20g000	1150	19.44	0.20	27.47	0.46
sj18g003a	1250	69.5	0.7	27.77	0.63
sj18g003b	1250	74.5	0.67	28.10	0.41

$W = N_{electrons} / E_{peak}$

Preliminary Conclusions

- W-value measured: $W = (27.6 \pm 0.2) \text{ eV}$
- W-value for pure Ne $W \sim 36 \text{ eV}$
- Difference expected from Penning effect with CH4
- Some systematic errors are missing

Energy Resolution

	270 eV		2820 eV	
Θ (fixed)	F	W	F	W (fixed)
0.00	0.093	27.97	0.088	27.54
0.12	0.26	27.51	0.19	27.54
0.20	0.39	26.85	0.25	27.54

- Resolution depends on
 - W-value
 - Fano factor

$$\left(\frac{\sigma_E}{E}\right)^2 = \frac{W(E_r)}{E_r} \left(\frac{1}{1+\theta} + F(E_r)\right)$$

- Fit of ³⁷Ar spectrum
 - <G>, θ, W(2.8keV) fixed
 - Fano(270eV),F(2.8keV),
 W(270eV) fitted
- Preliminary conclusion:
 - W(270eV)=W(2.8keV)
 - upper value for Fano

F(2.8keV) < 0.25, F(270eV) < 0.39

Experimental Measurement of Trigger Efficiency

- Events with signal from fit
 - Ne≥1
 - external trigger (PD)
- Triggered events
 - offline trigger
- Efficiency measurement
 - from fit (exact)
 - N_{trigger}/N_{tot} simpler and accurate for our threshold

Characterisation of Gas Properties in SPCs 9th TPC Symposium, Paris Philippe Gros, Queen's Univesity

Vew

Monitoring over time

Laser can be operated continuously during WIMP search runs

- Ensure the detector is "alive"
- Reject highly unstable periods
- Correct for variations of the gain over time (here, x3 reduction of the relative dispersion of the 2.82 keV peak)
- Cancels possible rate effect (fixed rate ~10Hz)
- No additional background
- Only 2% dead time for 10Hz (2ms event window)

- Drift time = Signal time PD time
- Strong dependence on HV as expected
 - non trivial due to non uniform field
- Short term fluctuation
 - O(1s) time constant
 - probably correlated to gain variations (moving charges)

One would expect drift time and gain variations to be anticorrelated (higher drift time = lower electric field = lower gain) but these are postively correlated to be discussed... Characterisation of Gas Properties in SPCs

2018-12-14

9th TPC Symposium, Paris Philippe Gros, Queen's Univesity

Conclusions

- A UV laser can be used for precise measure of Single Electron Response in SPCs
- The laser signal is well described by Polya and Poisson
 - potential measurement of W and Fano factor
 - calibration of critical parameters in actual gas mixture
- Extra information on drift velocity and diffusion
 - monitoring during DM physics run!
 - potential monitoring at very short time scale (~1s)

<u>UV laser is a powerful tool for detector</u> <u>characterisation and monitoring in rare event search</u>

Back-up

Characterisation of Gas Properties in SPCs 9th TPC Symposium, Paris Philippe Gros, Queen's Univesity

Effect of the parameters on the energy spectrum meas

Distribution of best fit values

Assess the systematic uncertainty associated with non-fixed

The bias induced by +-5 % fluctuations of mu on the reconstruction of the mean gain is extremely small

$$\frac{P(N|\mu(1+\epsilon)) + P(N|\mu(1-\epsilon))}{2} \sim P(N|\mu) \times (1 + \frac{\epsilon^2}{2}(N^2 - 3N + 1))$$

For +- 5 % fluctuations :

 $\frac{P(N|1.05\mu) + P(N|0.95\mu)}{2} \sim \frac{P(N|\mu) \times (1 + 0.00125 \times (N^2 - 3N + 1))}{2}$ Characterisation of Gas Properties in SPCs 9th TPC Symposium, Paris Philippe Gros, Queen's University

2018-12-14

20/21

Experimental approach

he innessurface of the vessel is illuminated with a UV laser to extract a tunable number of Vew single guanta !

photo-electrons.do

Ations: Characterization of the SPC response down to single electrons Precision (1 % level) measurements of the avalanche gain and of the relative gain variance Study of gas properties : Drift time, Diffusion time, W-value, Fano Factor Monitoring of the stability of the detector response during WIMP search runs Experimental measurement of the trigger threshold efficiency

UV-Laser beam (213 nm)

Compact diode-pumped solid state active Q-switched laser (1064nm) coupled with a fifth harmonic generator : output beam 213 nm

Left-over radiation (1064 nm, 532 nm, 355 nm, 266 nm) supressed by a 213 nm band-pass filter Neutral Density variable attenuator : tunable transmission from 1 % to 100 %

PhotoDetector (PD)

Si Biased PD (Thorlabs, DET10 A, ~QHO2aAtMisatioR5MATspreamplifiein(SPCBs110, RC=140 µs)

- relative resolution of the PD to a fixed take space $\frac{1}{100}$ - $\frac{1}{100}$ or better

²Spherical Proportional Counter (SPC)

fical Proportional Counter (SPC) Philippe Gros, Queen's University 30 cm diameter stainless steel vessel, 2 mm diameter sensor with Bakelyte umbrella