PROGRESS ON BARIUM TAGGING FOR NEXT

Ben Jones

University of Texas at Arlington

USA

IOWA STATE UNIVERSITY

co-spokespersons:

David Nygren

JJ Gomez Cadenas

Spain

Universidad de Zaragoza

Portugal, Israel, Russia, Columbia

Lior Arazi already talked about NEXT and HPGXe – so I will skip introductions and get right to the point...

Barium Tagging

- Barium ion is only produced in a true ββ decay, not in any other radioactive event.
- Identification of Ba ion plus ~1% FWHM energy measurement would give a background-free experiment.
- Various experimental techniques exist to image single atoms or ions.
- Can any of them be applied to efficiently detect an individual barium ion or atom in a ton of material?

Barium tagging for 0nubb has been actively explored in liquid and gaseous xenon for >15 years, with the holy grail is a scalable, efficient, single ion sensitive technology.

Barium Atoms and Ions

- Barium is born in a high charge state as emerging beta electrons disrupt the atom
- Quickly captures electrons from xenon to reach the Ba++ state
- In gas, it ~stops there. In liquid, further recombination happens.

Liquid – Some distribution

Gas – Mostly this

Q: How do you make Ba++ shine?

Concept to adapt SMFI for Ba tagging:

D.R. Nygren, J.Phys.Conf.Ser. 650 (2015) no.1, 012002

SMFI:

 A non-fluorescent molecule becomes fluorescent (or vice versa) upon chelation with an incident ion.

Calcium and barium are congeners – many dyes developed for calcium are also expected to respond to barium

SMFI is a technique from biochemistry with demonstrated single-ion resolution.

← Rhod-2 sensing Ca⁺⁺ production in rat astrocyte cells

J Microsc. 2011 Apr;242(1):46-54

J Cell Biol 145, 795 (1999).

Single molecule tracking using SMFI is the basis of super-resolution microscopy

These methods won the Nobel Prize in chemistry in 2014.

← First dabbling - developed a bespoke fluorescence sensor to study barium production at the end of a fiber.

Single molecule fluorescence imaging
as a technique for barium tagging in
neutrinoless double beta decay
Jones, McDonald, Nygren, JINST
(2016) 11 P12011

We find strong fluorescence from Fluo3 and Fluo4 under chelation with Ba++ ions →

TIRF

Total Internal Reflection Fluorescence microscopy

TIRF

Total Internal Reflection Fluorescence microscopy

Single Ba⁺⁺ TIRF images

← This image shows a weak solution of barium perchlorate salt on our sensor.

Each spot is a **single** barium ion.

Brighter spots are near the TIRF surface, dimmer ones are deeper in the sample.

In a xenon detector, dye deposited as a monolayer and only brightest spots at constant depth expected.

This "step" is how you know it is exactly one ion.

Single ions barium resolved with 2nm super-resolution and 12.9 sigma stat. significance.

Phys.Rev.Lett. 120 (2018) no.13, 132504

First demonstration of single Ba++ ion resolution.

Next steps: Making it work in gas

- 1. Barium ion test beam
- 2. Barium drift characterization
- 3. Dry phase microscopy
- 4. Ion concentration to sensors
- 5. Dry SMFI molecule design
- 6. Combine into a working sensor for NEXT prototype

Next steps: Making it work in gas

- cterization
- No time to tell you about it all!
 - 4. Ion concentration to sensors Focus on new stuff here:
- 5. Dry SMFI molecule design
- 6. Combine into a working sensor for NEXT prototype

Inadequacies of the FLUO family

Deprotonation of carboxylic acids is required to accept the ion – we observe the characteristic pH dependence of this in solution

dry

is not bright in dry phase.

But pyrene works. We can resolve single molecules of it too.

FOSS LAB @ UTA

Molecule Development

- As a first step we have targeted a systematic exploration of azo-crown and azo-cryptand derivatives.
- Showing you the first results from these studies today.
- Pyrene has been our first choice fluor. Due to the design of the synthesis, it is "plug and play" to install new ones.

15-crown-5

18-crown-6

MAC-NH (Monoaza Cryptand)

Example of the synthesis for 15c5: **FOSS LAB** @ UTA HO NaH THF, 70 ⁰C, overnight 30 % TsO PyreneCH₂Br (1 eq) Pd/C 10%, H₂ TEA (1.1 eq) Toluene/THF (1:1) EtOH, rt, 20 h reflux, 24 h

Then into the column to clean it up...

32%

FOSS LAB

Installing Alternative Fluorophores

168 SINGLE MOLECULE FLUORESCENCE SPECTROSCOPY

Table 4.1 Photophysical properties of some common dyes with potential for single molecule fluorescence studies

Fluorophore	λ_{ex}^{1p}	λ^{1p}_{em}	QY	ε	SS	$ au_{f}$	$\lambda_{\rm ex}^{2p}$	λ_{em}^{2p}	Reference
	(nm)	(nm)		$(cm^{-1}M^{-1})$	(nm)	(ns)	(nm)	(nm)	
FITC	495	520	0.7	73,000	25	_	947	530	[87–89]
FAM	495	520	0.7	83,000	25	_	_	_	[88]
TMR	554	585	0.2-0.5	95,000	31	2.1	849	570	[5,90,91]
R6G	530	556	_	105,000	26	_	_	_	[92]
Cy2	489	506	_	_	17	_	905	520	[87,93]
Cy3	550	570	0.14	150,000	20	~1	1032	578	[3,87,90]
Cy5	650	670	0.15	250,000	20	~1	_	_	[3,5,90]
Cy5.5	675	694	_	250,000	19	_	_	_	[3]
Cy7	743	767	0.02	250,000	24	~0.8	_		[3,90,94]
ECFP	458	472	0.4	26,000	14	_	_	_	[94]
EGFP	395,470	509	0.8	30,000	39	3.2	_	_	[5,90,94]
EYFP	514	527	0.6	84,000	13	3.7	_	_	[90,94]
DsRed	532	582	0.29	22,500	50	2.8	_	_	[90]
Bodipy Fl	504	510	_	70,000	6	_	920	526	[87,88]
Bodipy R6G	528	547	_	70,000	19	_	_	_	[88]
AF488	495	520	0.5-0.9	80,000	25		985	530	[5,87]
AF546	554	570	_	112,000	16	_	1028	582	[87,95]
AF555	555	565		150,000	10				[3]
AF594	590	617	_	92,000	27	_	1074	619	[87,95]
AF633	632	647	_	100,000	15	3.2	_	_	[3,90]

@ UTA Br "plug and play

Handbook of Single Molecule Fluorescence, Gell, C. Brockwell, D. Smith, A. OUP Oxford, 2006, New York p. 168-9.

Home made fluorophore with extremely strong off/on response!

(preliminary numbers – still optimizing...)

$$\begin{array}{c} \text{CO}_2\text{H CO}_2\text{H CO}_2\text{H} \\ \text{CO}_2\text{H CO}_2\text{H} \\ \text{N} \\ \text{O} \\ \text{$$

BAPTA, fluorescein-Cl

BAPTA, fluorescein-F

18c6, pyrene:

15c5, pyrene:

FLUO-3

FLUO-4

NEXT-1

NEXT-2

Max. Frac. Ba⁺⁺

17 x

85 x

6 X

205 x

Response:

"Dry" SMFI response with NEXT-2:

Dry microscopy on chelated samples shows strong on/off behavior.

This has not been achievable with commercial fluorophores.

First demonstration of dry Ba++ fluorescent chemo-sensor.

Implement a sensor based on NEXT-2 molecule in barium ion beam to find out!

3.0

International Journal of Mass Spectrometry 299 (2011) 71–77

1000

Superposed fields:

RF creates effective potential that levitates ions without neutralization Surfing field sweeps ions to center,

ION FUNNEL - FOCUSING

RF WAVEFORMS PROVIDE RADIAL FOCUSING, AND A DC GRADIENT PUSHES IONS AXIALLY TOWARD THE BASE.

As explored by Brunner / nEXO for extraction to trap

ION CARPET - FOCUSING

THE ALTERNATING RF PHASES ON THE STRIPS PROVIDE A SHORT-RANGE FORCE PUSHING IONS AWAY FROM THE CARPET, WHILE A DC GRADIENT PULLS THEM TOWARD THE CENTER.

We plan to prototype and demonstrate a small (5cm) RF carpet at UTA

Names:

- This molecule is called:
 - 13-pyrenylmethyl-1,4,7,10-tetraoxa-13-azacyclopentadecane
- Under IUPAC rules we may also call it:
 - N-prenylmethyl-azo-15-crown-5

- "Standard" in SMFI is 4-letter word and number
 - {[2-(2-{2-[Bis(carboxymethyl)amino]-5-(2,7-dichloro-6-hydroxy-3-oxo-3*H*-xanthen-9-yl)phenoxy}ethoxy)-4-methylphenyl](carboxymethyl)amino}acetic acid
 - → FLUO-3

The barium beam

- The next major step is to test barium sensing dyes in HPGXe environment
- Expect better performance than in solution from both energetics and reactivity considerations

Barium or barium coated needle goes here

Custom electroplating method deposits a stable barium-rich coating onto copper for spark source from methanol.

Removes difficulty of barium metal handling.

Bare copper

WD14.2mm 25.0kV x4.2k 1 WD14.2mm 25.0kV x4.2k 50

Barium mobility in gas – in theory:

Excellent agreement with data for Ba+

Mobility and Clustering of Barium Ions and Dications in High Pressure Xenon Gas

E. Bainglass, B.J. P. Jones, et. al. Phys.Rev. A97 (2018) no.6, 062509

For Ba++ things get more complicated.

0.625 Predicted Mobilities in Xenon 0.600 Ba⁺ Ba⁺(*enr*) Reduced Mobility / $cm^2V^{-1}s$ Ba++ Ba⁺ + (*enr*) 0.575 0.550 0.525 0.500 0.475 0.450 5 10 15 Pressure / bar

Calculated Ba++ clusters:

Bigger clusters more similar to each other, so less pressure dependence in Ba++ than Ba+

Isotopic composition changes scattering kinematics, so %-level differences with enriched xenon

We will test this with experimental data soon!

The ion beam is coming...

guided here via an eletric field.

A needle and ring electrode that is adjustable allowing for an adjustable spark gap to acomadate Various pulse and pressure conditions.

Barium ion mobility in gas

 Measurements from Medina's PhD thesis illustrate the importance of molecular ion formation.

$$Ba^{+} + Xe + Xe \longleftrightarrow BaXe^{+} + Xe$$

- Never measured in Ba++ to our knowledge
- And not measured above 1 bar to our knowledge either

From "Mobility and fluorescence of barium ions in xenon gas for the EXO experiment" – Julio Cesar Benitez Madina, PhD thesis, Colorado State University

- Past published calcs used coupled cluster theory – good for bare ion ONLY.
- We calculate cluster distributions and cross sections using density functional theory then evaluate mobility.
- DFT is not expected to be as accurate. But too many atoms for coupled cluster method.
- We benchmark our DFT

 ion mobility
 calculations for bare
 ions against McGuirk,
 and experimentally
 extracted data for BaXe
 system.

DFT vs coupled clusters

Comparison of potentials

Comparison of mobilities

Ba++ clusters much more

Enthalpy pushes this way

$$[BaXe_{N-1}]^{++} + Xe \leftrightarrow [BaXe_N]^{++}$$

Entropy pushes this way

NEXT-100 projected background index performance

← Approximately Background free @ 100kg-scale

World-leading in xenon by an order of magnitude, but still ~5-7 cts/yr at ton scale