A low-background Micromegas detector for IAXO and BabyIAXO

Elisa Ruiz-Chóliz

On behalf of the IAXO-MM group Universidad de Zaragoza

elisa.ruiz.choliz@cern.ch

First time a Micromegas detector is operated with an x-ray telescope

Optics: Wolter I x-ray telescope \rightarrow 5cm diameter; 1.5m focal-length **Detector:** Shielded Microbulk Micromegas placed at the focal point

Performance:

8 months of operation in data-taking conditions \rightarrow Best signal-to-noise ratio Results published: NPHYS4149

Ultra-low background detector

TPC working principle:

- 1. Ionizing radiation creates primary charges
- 2. Primary charges drift towards the anode
 - ightarrow enter the amplification region

Micromegas working principle:

- 1. Primary e⁻s go through mesh holes
- 2. Trigger an e^{-} avalanche in the gap
 - ightarrow detectable signals @ mesh and anode

Ultra-low background detector

Useful features for axion searches

- Solid structure and consolidated manufacture (2010 JINST 5 P02001) systematic reliable performance (JINST 7 (2012) P04007)
- Low intrinsic radioactivity (Astropart. Phys 34 (2011) 354-359) made out of Kapton and copper
- Good energy resolution (JCAP 1512 (2015) 008) 13% FWHM at 5.9 keV
- Low energy threshold (2014 JINST 9 P01001) < 0.5keV already achieved
- Topological information (2013 JINST 8 C12042)

high power to discriminate x-rays signals from background

 Proven performance by IAXO pathfinder (CAST) (2017 NPHYS4149) Combination of X-Ray optics + Micromegas detectors Best signal-to-noise ratio

Ultra-low background

Background improvements

• Radiopurity

Non-radiopure components replaced

- Readout patterned with high granularity
 Identify signals & reject background
 Offline rejection algorithms
- Shielding

Active shielding: muon vetos

- → scintillators covering the maximum solid angle for cosmics
- Passive shielding: external gamma coverage
 - → detector chamber and tubes made out of **electroformed copper**
 - ightarrow pure lead shielding around the detector

(0.83 ±0.03) x 10⁻⁶ counts keV⁻¹ cm⁻² s⁻¹

Background in LSC (underground)

~ 10⁻⁷ counts keV⁻¹ cm⁻² s⁻¹

IAXO goal

10⁻⁷-10⁻⁸ counts keV⁻¹ cm⁻² s⁻¹

The IAXO-D0 setup at Zaragoza

IAXO detector prototype

Goals

- Background level: 10⁻⁷-10⁻⁸ counts keV⁻¹ cm⁻² s⁻¹
- Energy threshold: ~0.1 keV

Experimental setup

- Detector: same design as CAST XRT-MM • excellent performance
- **AGET-based electronics** •

auto-trigger for every readout channel

Detector

IAXO-D0 Micromegas

Detector characteristics

TPC drift: Electroformed Cu chamber = 3cm 1.4bar (Ar+2% Isobutane)

Readout: Strip pattern pitch = $500\mu m$ Active area = $6 \times 6 \text{ cm}^2$

120 strips per axis

X-ray window: 4µm aluminized mylar (gas-tight & transparent to x-rays)

Strongback cathode: Spider-web design

IAXO-D0 shielding

Passive shielding

Lead shielding

- 20cm of lead, 4π coverage
- Properly stop gamma radiation

Electroformed Cu chamber and pipes

• Innermost shielding for possible lead radiation

Active shielding

Muon vetoes

- 5 plastic scintillators + PMTs
- Designed to cover a solid angle of 4π for cosmic muons

REST: acquisiton and analysis software

Rare Event Searches with TPCs

Collaborative framework

- → C++
- → ROOT
- → Others (GEANT4, magboltz)

Acquisition + analysis + simulations

Analysis steps

- Signal analysis
- Hit analysis
- Track analysis

Discrimination capabilities

- Topological information
- Observables \rightarrow event selection

First IAXO-D0 data-taking campaign: Ar+2%lso

- 16/07/2018 21/08/2018 → 37 days
 - ~406h of background
 - 20-23h background runs
 - 20min Cd109 calibrations between background runs

Background discrimination with REST

- Characterization of x-rays with REST observables
 - I track
 - 2 tracks (99% of the total energy)
 - Small, punctual and symmetric energy depositions
 - Centre of the readout (fiducial cut)
- Preliminary background level
 - □ 1,3 · 10⁻⁴ counts/keV/cm²/s
 - Too high but still room to improve
 - Better cuts
 - Less noise
 - Muon vetoes

work in progress!!

Background model simulation with REST

Step 1: IAXO-D0 geometry and readout implementation (Ar + 2% Iso)

Step 2: simulation of the individual contributions

- Cosmic muons
- Cosmic gammas
- Cosmic neutrons
- Environmental gammas
- Radioactivity neutrons
- Material contaminations
- Ar39 from the gas

Background model simulation with REST

Step 3: analysis with REST

Simulation \rightarrow experimental-like energy hits \rightarrow tracks

- 1. Characterization of x-rays and definition of discriminants
- 2. Discrimination of background
- 3. Combination of all the background components
- 4. Background model for Ar+2%Isobutane work in progress!!

Example

Same observables for:

- → Color lines: x-rays [1-10] keV
- \rightarrow Black line: cosmic muons

Summary & conclusions

Thanks for your attention!

The baseline detection technique for IAXO is an ultra-low background TPC + Micromegas readout + x-ray telescope

Microbulk Micromegas detectors for axion searches: very stable, good energy resolution in the RoI and low background levels.

IAXO-DO: IAXO detector prototype to prove the levels of background for IAXO.

e the nd for

IAXO-DO background model simulation with REST.

REST.

Back-up slides

- Data taking conditions
 - Ar+2%lso @ 1,4bar
 - Gas flux ~ 3 l/h
 - Cd109 source (22keV)
 - Vacuum at the pipe
- Best operarion point:
 - V_{mesh} = 320V
 - V_{drift} = 710V
- Expected performance achieved
- Compatible with previous measurements

Micromegas performance over time

- Data taking conditions
 - Ar+2%lso @ 1,4bar
 - Gas flux ~ 3 l/h
 - Cd109 source (22keV)
 - Vacuum at the pipe
 - V_{mesh} = 320V
 - $V_{drift} = 710V$
- 20 hours of calibration
- Very stable gain and resolution

²⁰ hours