Persistency Issues for LHCb Run III

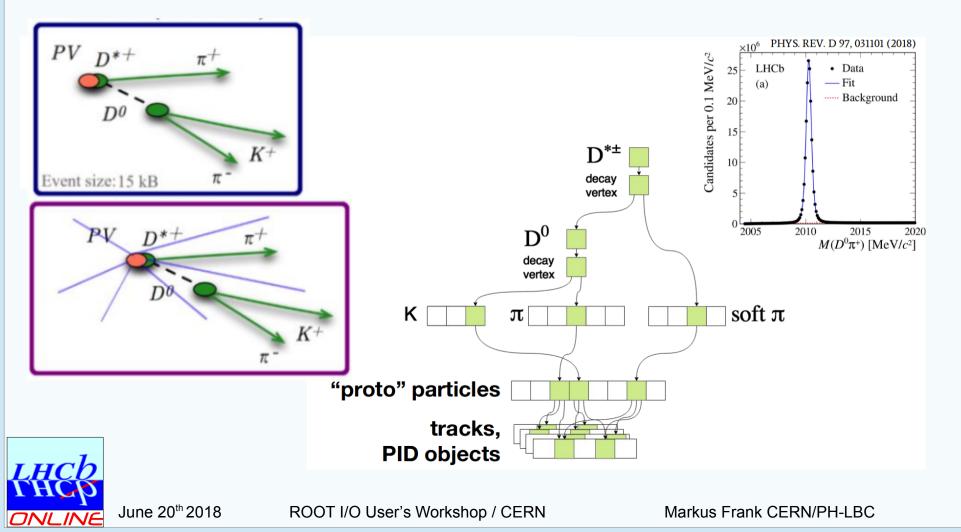
- Basic numbers and requirements
- The new paradigm
- Implications of the computing model
- What is getting onto us

Markus Frank PH/LBC

June 20th 2018

ROOT I/O User's Workshop / CERN

Markus Frank CERN/PH-LBC


Scope

- Run I and Run II data are (nearly) history
 - Things worked out not too badly
 - Reconstruction and analysis I/O works based on ROOT trees
- On the agenda now: Upgrade, upgrade, upgrade: Run III
 - All numbers to be taken with a grain of salt
 - Dependencies on changes to event model etc. unknown
 - This is in three years from now
 - Situation similar to 2005: Exact facts notknown
 - Will still try to state the problems we shall likely face
 - LHCb faces a different situation Small events, many streams etc. problems probably even getting emphasized

Data Format: Dramatic Changes Ahead

- There will no longer be raw data: game changer
 - High level objects no offline reconstruction possible

Online Data I/O

- At 40 MHz we cannot afford to save raw data
- TESLA output format (3/4 of data volume [?])
 - Strategy: Preselect useful primary vertices and secondaries, throw away anything else
 - ~10 topological streams depending on physics content
 - MDF sequential files
 - Specialized data packing
 - Today: average 30 kB / events [spread: 15-80 kB]
 Expected: similar size and spread
 - Data rate: 5-10 GB/s signal events
 - 50 PB / year assuming 5 x 10⁶ seconds collisions per year

Offline Data I/O

- Starting from 50 PB online data in 10 streams
 - Further preselections depending on physics
 - ~100 offline streams for physics analysis
 - 500 TB per stream with smallish overlaps
 - Up to 100 % data retention => refinement depending on physics
 - ROOT format
- Should the full data volume be available at all time?
 - Idea: Keep 20 % ie. 100 TB per stream on disk
 - Only open access for 'final' analyses
- 100 PB total data volume per year
 - 50 PB from online + 100 x 500 TB

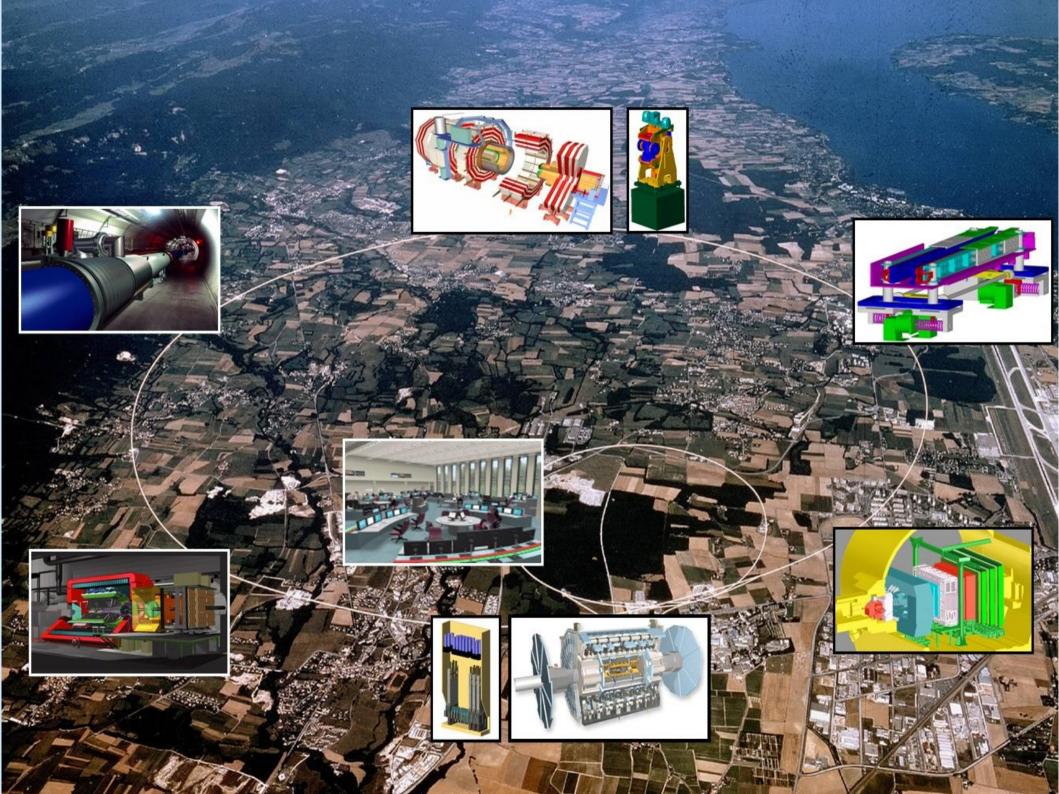
Event Model Dependencies

- Direction not clear
 - SoA or AoS
 - In split mode roughly the same at file level
 - CPU wise of course SoA is much simpler for ROOT
- Has clearly an effect on the analysis model
 - ... but not too much known at the moment

Offline Streams and Analysis Model

- 500 TB / stream / year
- As 15 years ago. Only different scale:
 - Group productions for mini-, micro-DST, N-tuples
 - O(5kB), O(10TB) O(2 x 10⁹ events)
 - Depends on analysis needs
 - Requires sparse reading of data O(< few %)
 - 1 ... 2 refinement cycles per quarter

Offline Streams and Analysis Model


- Expect same problems as for stripping
 - 10 ... 20 simultaneous output streams
 - Memory explosion for splitting
 - Any I/O buffer gets multiplied by 10...20
 - In the past this led to absolutely contrary optimizations
 - NO splitting: object I/O
 - Small buffers, relatively often flushed to disk
 - Could not take any advantage of work done by the other LHC experiments

Conclusions

- Showed the roadmap for the LHCb Run III
 data usage
- Facts and numbers are far from fixed
- ROOT event data I/O is an integral part of any analysis activity
 - Streams, mini, micro-DST, N-tuples
- Problems from Run I/II likely to not have vanished
 - Memory usage is an issue for LHCb ROOT I/O

