ALICE Il0 IN RUN J

ALICE IN RUN 3: 02

S Asynchronous
ynchronous .
ReadOut . reconstruction
reconstruction
I up to 100GB/s
EPN / Grid

| / EPN / Grid \
EPN / Grid Permanent
storage

On-site
storage

[
@)
-
O
Q
-
(b))
)

Beam-on Beam-off 2

ALICE IN RUN 3: 02

This computing architecture will be implemented in terms of message passing entities
called "devices".

Key ingredients:

» Standalone processes for deployment flexibility.

» Message passing as a parallelism paradigm

» Shared memory backend for reduced memory usage and improved performance.
» Simplified, zero-copy data model for performance.

» Dataflow framework built on top to simplify life of the end user.

TIMEFRAME

Data quantum will not be the event, but the "Timeframe".

» ~23ms worth of data taking in continuous readout. Equivalent to 1000 collisions. Atomic unit.

» ~10GB after readout. Vast majority in TPC clusters.

» Compressed to ~2GB after synchronous reconstruction, mostly thanks to track-model-

compression.

» Flat format with tables and indices. Optimised for TPC reconstruction on the GPU. Direct result
of the synchronous reconstruction and directly usable (no-deserialisation) for asynchronous

reconstruction.

02 DATA MODEL

A timeframe is a collection of (header, payload) pairs. Headers defines the type of data. Different
header types can be stacked to store extra metadata (mimicking a Type hierarchy structure). Both
header and payloads should be usable in a message passing environment.

Custom
DataHeader DataHeader vee (DataHeader)

Different payloads might have different serialisation strategies. E.g.:

» TPC clusters / tracks: flat POD data with relative indexes, well suitable for GPU processing.

» QA histograms: serialised ROOT histograms.

» AOD: some columnar data format. Multiple solutions being investigated.

ANALYSIS MODEL: RUN 2

In order to offset the costs of reading data, ALICE has as strong tradition of organised
analysis (i.e. trains):

» Users provide "wagons", organised in "trains". Trains run on the Grid.
» Data is read only once per train, wagons get applied to it.
» Data is kept in a generic C++ object store, backed by ROOT, as you know.

» Slow sites / site issues is what dominates performance.

geesssnnsnnng
oo U, W

—“
VoaVaal FPoia

*-ov -0

-0

I

ANALYSIS MODEL: RUN 3

Solid foundations: the idea of organised analysis will remain. Improve on the implementation.
» x100 more collisions compared to present setup

» Do analysis on fewer, highly performant, Analysis Facilities (e.g. @GSI).

» Streamline data model, reducing generality and features set to improved speed.

> Explore different compression strategies (e.g. LZ4, Zstd, custom compression code)

> Recompute quantities on the fly rather than storing them. CPU cycles are cheap.

» Goal 1s to have each Analysis Facility go through 5PB of AODs every 12 hours (~100GB/s).

UV e—o VWY, .Ul UV, VWY G Ul UiV, oUW, .Ul UiV, VWY, .Ul U, WY, . WD

We want longer, faster trains!

—

THE FAIRMQ BIT: A POSSIBLE TOPOLOGY

Processor \

\ Processor /

Plotter

Reader /
from disk \
Reader
from disk \

... can be scaled out by adding extra devices (assuming multiple cores)...

REQUIREMENTS FOR THE AOD FORMAT

AQOD's data format will have to play well with AliceO2 message passing, shared
memory backed, distributed nature.

» Zero-{Copy,Serialisation,Adjustments}: we want to be able to reuse data between
processes.

» Growable: ability to extend columns on the fly.
» Prunable: ability to drop columns on the fly.
» Skimmable: abulity to select only certain rows.

Strategy: we are willing to lose some degree of generality for performance.

A POSSIBLE SOLUTION FOR AQGD: APACHE ARROW

Well established. Top-Level Apache project backed by key developers of a number of opensource projects: Calcite,
Cassandra, Drill, Hadoop, HBase, Ibis, Impala, Kudu, Pandas, Parquet, Phoenix, Spark, and Storm.

Very active. 119 contributors, https://github.com/apache/arrow

O2 design friendly. message passing / shared memory friendly. Support for zero-copy slicing, filtering.

10

https://github.com/apache/arrow

APACHE ARROW: A FEW TECHNICAL DETAILS

In memory column oriented storage. Full description https://arrow.apache.org/docs/
memory _layout.html. Data is organized in Tables. Tables are made of Columns. Columns are
(<metadata>, Array). An Array is backed by one or multiple Buffers.

Nullable fields. An extra bitmap can optionally be provided to tell if a given slot in a column s
occupied.

Nested types. Usual basic types (int, float, ..). It’s also possible (via the usual record shredding
presented in Google’s Dremel paper) to support nested types. E.g. a String is a List<Char>.

No (generic) polymorphism. The type in an array can be nested, but there is no polymorphisms
available (can be faked via nullable fields & unions).

Suitable for ALICE analysis needs?

11

APACHE ARROW: INTEGRATION WITH ROOT

The main concern here is of course "how do I use this from ROOT"?

-

Arrow Memory RDataFrame

i

RDataFrame: see talk by Danilo. Arrow fits naturally as a "RDataSource".

Show me the code! https://github.com/root-project/root/pull/1712

Bonus: ROOT gets seamless integration with many OpenSource projects which you can mention to impress your friends and
that make your CV look good to head-hunters.

12

https://github.com/root-project/root/pull/1712

APACHE ARROW: HOPES

Query optimisation: by writing an analysis in form of a filter - emit - reduce query, the system
has the ability to optimise it's execution. "All vertices with Vertex.z > 1" should run on "All vertices
with Vertex.z > 0".

Remove / minimise serialisation, scale decompression.

Allow vectorised processing. Not a big deal at the moment (bottleneck is deserialisation).
Might become relevant in the future?

Homogeneity with the rest of the system: analysis wagons become yet another device /
data processor in the O2 framework.

Integration with other system: using established OpenSource components add complications,
but potentially simplifies long term sustainability and integration with other tools.

13

MORE IDEAS: CONDITIONS STORAGE

» Currently using ROOT files served from CVMES.

» Given the fact that condition objects evolve over time, it is probably worth
investigating compression of different TKeys across different files.

x

» This is what git does if you substitute TKey -> blob, TFile -> commit. Why not
storing TKeys as git blobs (or mimick that internally in CVMES)?

14

