
ALICE I/O IN RUN 3
Giulio Eulisse

ALICE IN RUN 3: O2

FLP

FLP

FLP

EPN

FLP

De
te

ct
or

EPN

EPN

EPN

>3TB/s
500GB/s

...

ReadOut
Synchronous  

reconstruction

On-site  
storage

EPN / Grid

...

Asynchronous  
reconstruction

Beam-on

EPN / Grid

EPN / Grid Permanent 
storage

up to 100GB/s

Beam-off �2

ALICE IN RUN 3: O2
This computing architecture will be implemented in terms of message passing entities
called "devices".

Key ingredients:

➤ Standalone processes for deployment flexibility.

➤ Message passing as a parallelism paradigm

➤ Shared memory backend for reduced memory usage and improved performance.

➤ Simplified, zero-copy data model for performance.

➤ Dataflow framework built on top to simplify life of the end user.

�3

TIMEFRAME
Data quantum will not be the event, but the "Timeframe".

➤ ~23ms worth of data taking in continuous readout. Equivalent to 1000 collisions. Atomic unit.

➤ ~10GB after readout. Vast majority in TPC clusters.

➤ Compressed to ~2GB after synchronous reconstruction, mostly thanks to track-model-
compression.

➤ Flat format with tables and indices. Optimised for TPC reconstruction on the GPU. Direct result
of the synchronous reconstruction and directly usable (no-deserialisation) for asynchronous
reconstruction.

�4

O2 DATA MODEL
A timeframe is a collection of (header, payload) pairs. Headers defines the type of data. Different
header types can be stacked to store extra metadata (mimicking a Type hierarchy structure). Both
header and payloads should be usable in a message passing environment.

Different payloads might have different serialisation strategies. E.g.:

➤ TPC clusters / tracks: flat POD data with relative indexes, well suitable for GPU processing.

➤ QA histograms: serialised ROOT histograms.

➤ AOD: some columnar data format. Multiple solutions being investigated.

DataHeader Payload1 DataHeader Payload2
Custom
header ... ()IndexDataHeader

�5

ANALYSIS MODEL: RUN 2
In order to offset the costs of reading data, ALICE has as strong tradition of organised
analysis (i.e. trains):

➤ Users provide "wagons", organised in "trains". Trains run on the Grid.

➤ Data is read only once per train, wagons get applied to it.

➤ Data is kept in a generic C++ object store, backed by ROOT, as you know.

➤ Slow sites / site issues is what dominates performance.

ESD /
AOD

�6

ANALYSIS MODEL: RUN 3
Solid foundations: the idea of organised analysis will remain. Improve on the implementation.

➤ x100 more collisions compared to present setup

➤ Do analysis on fewer, highly performant, Analysis Facilities (e.g. @GSI).

➤ Streamline data model, reducing generality and features set to improved speed.

➤ Explore different compression strategies (e.g. LZ4, Zstd, custom compression code)

➤ Recompute quantities on the fly rather than storing them. CPU cycles are cheap.

➤ Goal is to have each Analysis Facility go through 5PB of AODs every 12 hours (~100GB/s).

AOD We want longer, faster trains!

�7

THE FAIRMQ BIT: A POSSIBLE TOPOLOGY

Reader
from disk

Reader
from disk

Decompressor  
 /

deserialisation

Decompressor
/

deserialisation
Filter

Processor

Decompressor
/

deserialisation

Processor

Plotter

...

Current bottleneck

can be scaled out by adding extra devices (assuming multiple cores)...

�8

REQUIREMENTS FOR THE AOD FORMAT
AOD's data format will have to play well with AliceO2 message passing, shared
memory backed, distributed nature.

➤ Zero-{Copy,Serialisation,Adjustments}: we want to be able to reuse data between
processes.

➤ Growable: ability to extend columns on the fly.

➤ Prunable: ability to drop columns on the fly.

➤ Skimmable: ability to select only certain rows.

Strategy: we are willing to lose some degree of generality for performance.

�9

A POSSIBLE SOLUTION FOR AOD: APACHE ARROW
"Cross-language development platform for in-memory columnar data."

Well established. Top-Level Apache project backed by key developers of a number of opensource projects: Calcite,
Cassandra, Drill, Hadoop, HBase, Ibis, Impala, Kudu, Pandas, Parquet, Phoenix, Spark, and Storm.

Very active. 119 contributors, https://github.com/apache/arrow
O2 design friendly. message passing / shared memory friendly. Support for zero-copy slicing, filtering.

�10

https://github.com/apache/arrow

APACHE ARROW: A FEW TECHNICAL DETAILS
In memory column oriented storage. Full description https://arrow.apache.org/docs/
memory_layout.html. Data is organized in Tables. Tables are made of Columns. Columns are
(<metadata>, Array). An Array is backed by one or multiple Buffers.

Nullable fields. An extra bitmap can optionally be provided to tell if a given slot in a column is
occupied.

Nested types. Usual basic types (int, float, ..). It’s also possible (via the usual record shredding
presented in Google’s Dremel paper) to support nested types. E.g. a String is a List<Char>.

No (generic) polymorphism. The type in an array can be nested, but there is no polymorphisms
available (can be faked via nullable fields & unions).

Suitable for ALICE analysis needs?

�11

The main concern here is of course "how do I use this from ROOT"?

APACHE ARROW: INTEGRATION WITH ROOT

RDataFrame: see talk by Danilo. Arrow fits naturally as a "RDataSource".

Show me the code! https://github.com/root-project/root/pull/1712

Bonus: ROOT gets seamless integration with many OpenSource projects which you can mention to impress your friends and
that make your CV look good to head-hunters.

RDataFrame

�12

https://github.com/root-project/root/pull/1712

Query optimisation: by writing an analysis in form of a filter - emit - reduce query, the system
has the ability to optimise it's execution. "All vertices with Vertex.z > 1" should run on "All vertices
with Vertex.z > 0".

Remove / minimise serialisation, scale decompression.

Allow vectorised processing. Not a big deal at the moment (bottleneck is deserialisation).
Might become relevant in the future?

Homogeneity with the rest of the system: analysis wagons become yet another device /
data processor in the O2 framework.

Integration with other system: using established OpenSource components add complications,
but potentially simplifies long term sustainability and integration with other tools.

APACHE ARROW: HOPES

�13

➤ Currently using ROOT files served from CVMFS.

➤ Given the fact that condition objects evolve over time, it is probably worth
investigating compression of different TKeys across different files.

➤ This is what git does if you substitute TKey -> blob, TFile -> commit. Why not
storing TKeys as git blobs (or mimick that internally in CVMFS)?

MORE IDEAS: CONDITIONS STORAGE

Xt1

Yt1

Zt1

Xt0

Yt0

Zt0

Xt0 Xt1

Yt0 Yt1

Zt0 Zt1

�14

