
ATLAS: ROOT I/O for
multithreaded Athena
ROOT I/O Workshop, June 20th 2018

Peter van Gemmeren (ANL), Marcin Nowak (BNL)

Outline

 AthenaMT

 Athena Framework I/O Components

 Input
 Read Mutex

 Output
 Write Mutex

 xAOD and dynamic attributes

 TTreeCache improvements

 TTree entry number and object references

 Summary

ROOT I/O Workshp, CERN, 20 June 2018 ATLAS Event Storage Group 2

Multithreaded
AthenaMT

 For Run 3 ATLAS has developed a multithreaded framework called
‘AthenaMT’, based on GaudiHive.

 supports processing of multiple Events concurrently

 each Event occupies a ‘slot’

 the number of slots if chosen at runtime and remains constant

 each slot (Event) uses a separate transient Event Store identified by
an EventContext

C. Legget t 2016- 02- 26
6

AthenaMT / Gaudi Hive

• Gaudi Hive: multi-threaded, concurrent extension to Gaudi

• Data Flow driven
► Algorithms declare their data dependencies
► Scheduler automatically executes Algorithms as data becomes available.

• optimal traversal of graph possible if avg. Algorithm runtimes known

• Multi-threaded
► Algorithms process events in their own thread, from

a shared Thread Pool.

• Pipelining: multiple algorithms and events
can be executed concurrently
► some Algorithms are long, and produce data that

many others need (eg track fitting). instead of
waiting for it to finish, and idling processor, start a
new event.

• Algorithm Cloning
► multiple instances of the same Algorithm may exist,

and be executed concurrently, each with different
Event Context.

► legacy : one instance, non-concurrent
► cloneable : one or more instances, in its own thread
► re-entrant : once instance, executed concurrently by

multiple threads

t i me

 The framework schedules algorithms to
process Event data

 data driven algorithm scheduling

 concurrent / non concurrent algorithms

 Framework components and services
(including the I/O services) need to be able
to work in multi-threaded and multi-event
environment

 need EventContext to access Event state

 need to handle concurrent requests

 Reentrant or using mutex locking to
serialize execution

ROOT I/O Workshp, CERN, 20 June 2018 ATLAS Event Storage Group 3

Simplified
Athena I/O
Components
(Single Event)

APR:Database ROOT

APR:Database ROOT

APR:Database ROOT

Store
Gate

POOL
Svc

Output Stream

Scheduled bulk
write algorithm with

configurable
Itemlist

On-demand single
object retrieval

Conversion
Service

optional
T/P conversion

 StoreGate – transient Event Data store

 Conversion Service – Gaudi-style conversion service managing (AthenaPool) Converters
 Converters – templates specialized by type, can be generated automatically
 ATLAS-specific Transient/Persistent (T/P) conversion framework (for Schema Evolution)

 PoolSvc – interface layer and persistency manager for APR

 APR:Database – logical storage unit – ROOT implementation corresponds to a file
 Event Data stored in a single TTree, every StoreGate object in a top level TBranch

 Dynamic object attributes also use top-level branches

 Dynamic Attribute Reader – xAOD object extension for reading dynamic attributes

Dynamic Attr Reader

On-demand single
attribute retrieval

ROOT I/O Workshp, CERN, 20 June 2018 ATLAS Event Storage Group 4

Input

 Read steps:
 Single objects, on demand

 PoolSvc + APR + ROOT
 locate object using its Ref

 Database, Row, Branch

 disk read (TTreeCache)

 branch de-compression

 object de-serialization

 attach Dynamic Attribute Reader to xAOD objects

 Gaudi-style converter:
 Persistent to Transient conversion

 Attach transient object to its proxy in the Event Store

decompress t/p conv.

Compressed

baskets (b)

Persistent

state (P)

Transient

state (T)

Baskets (B)

streamread

Input File

ROOT File (F)

APR:Database ROOT

APR:Database ROOT

Store
Gate

POOL
Svc

On-demand
single object

retrieval

Conv.
Service

Opt.
T/P

Dynamic Attr
Reader

On-demand single
attribute retrieval

ROOT I/O Workshp, CERN, 20 June 2018 ATLAS Event Storage Group 5

Read Mutex

 I/O Services modified (mutexed) to make Athena input multi-threaded:
 PoolSvc - ensures that only one thread can use a particular instance of

APR:Database at the time

 Currently ATLAS uses three instances of APR:Database. One each for reading,
writing, and conditions reading

 Reading and writing happens concurrently (different files)

 An APR:Database corresponds to a single TFile

 One could create multiple APR:Database instances for reading a file in parallel

 ATLAS software can create separate APR:Database instances for different data types
to be read

 This would multiply the instances of ROOT TFile, TTree and TTreeCache, but each
cache would only hold a subsection of the TBranches , so memory costs are limited

 Concurrency by event: Because data is stored in baskets, clusters of events, this
could lead to multiple decompression of the same basket, so ATLAS doesn’t plan
to do this.

 ConversionSvc - only one thread can use a particular instance of Converter at
the time

 Converters (Gaudi-style) - single instance per transient object type

 T/P Converters keep a lot of internal state – easier to protect them as a whole

 (also protecting against concurrent use of a converter for read and write)

 as ATLAS uses many different types, lock waits should be rare

ROOT I/O Workshp, CERN, 20 June 2018 ATLAS Event Storage Group 6

Output

 Write steps:
 OutputStream loops over output-list objects in a given transient

Event Store (slot):

 Gaudi-style converter:

 Persistent to Transient conversion

 PoolSvc using ROOT:

 Object serialization

 xAOD objects – write all selected Dynamic Attributes

 OutputStream is an algorithm – writes a complete Event (TTree row)

 Can only write a single Event to a given APR:Database

 At the end of the OutputStream execution TTree::Fill() is called

 TTree compression

 Disk write

 using AutoFlush

APR:Database ROOT
Store
Gate

POOL
SvcOutput

Stream

Conv.
Service

Opt.
T/P

ROOT I/O Workshp, CERN, 20 June 2018 ATLAS Event Storage Group 7

Write Mutex

 Even though, OutputStream loops
over objects, converter of different
type can be dispatched
concurrently

 Possible to convert Type A for
event N concurrently with
converting Type B for event M.

 Currently, ATLAS uses a single,
mutexed APR:Database for
writing:

 Allowing ROOT implicit
multithreading.

APR:Database 1 includes ROOT write

Obj. 1
Type A

createRep

Converter A incl. T/P

Obj. 2
Type A

createRep

Obj. 1
Type A

Done

APR:Database
unlocked

Obj. 2
Type A

Done

Obj. 3
Type B

createRep

APR:Database
unlocked

Not Yet:
APR:Database 2

Obj. 4
Type B

createRep

Obj. 3
Type B

Not
Done

Converter B

Converter
unlocked

Obj. 3
Type B

Done

Obj. 1
Type A

register
Write

Converter A
unlocked

Obj. 2
Type A

register
Write

Obj. 3
Type B

Done

Obj. 4
Type B

Done

Converter A
unlocked

Stream 1 Stream 2

 Possible extension would be separate APR:Database for each Stream:

 Only for I/O intense workflows like Derivation.

 Not clear that all production will move to AthenaMT, AthenaMP will remain
important.

 Good experience with recently deployed shared I/O for Derivation

ROOT I/O Workshp, CERN, 20 June 2018 ATLAS Event Storage Group 8

ATLAS xAOD
and dynamic
attributes

 In Run 2, ATLAS has moved to a more advanced Event Data Model – xAOD

 xAOD type objects have fixed (compile time defined) and dynamic (run time
defined) data members kept in ‘stores’

 The fixed (static) stores have dictionaries

 all data read and written in a single I/O operation

 ROOT split-level can be configured

 Dynamic attribute stores have no dictionaries

 Each attribute from the dynamic store is written into its own branch “by hand”

 Attributes themselves do have dictionaries

 Dynamic attributes are not read back at the same time as their xAOD objects,
but are retrieved one by one only when they are actually accessed

 all xAOD attributes have special accessors

 Possibility for concurrent reads from the same TFile!

 From concurrently running algorithms accessing dynamic attributes of different
xAOD objects

 ATLAS data files can have up to several thousand top-level branches, most of
them for dynamic attributes

 Efficient Caching is very important

ROOT I/O Workshp, CERN, 20 June 2018 ATLAS Event Storage Group 9

Recent
TTreeCache
improvements
(David Clark,
ANL SULI
2017)

 Preloading and Retaining Clusters
 Branches will load an entire clusters into memory

 Branches will keep the current and previous cluster in memory

ROOT I/O Workshp, CERN, 20 June 2018 ATLAS Event Storage Group 10

Future
Improvements
to ATLAS
TTree
Navigation
(Nikita Dulin,
ANL SULI
2018)

 ATLAS currently makes extensive use of ROOT TTree entry
number as an external reference for object retrieval

 For several newer ROOT features, mainly those using TMemFile,
the entry number reported by TTree::GetEntries() may not be the
same as the entry number in the physical file.

 Prevents ATLAS from adopting these features

 ATLAS recently introduced a SharedWriter concept:
 In multi-process (MP) Athena a dedicated process is writing,

collecting output from all other processes

 no need to perform a very costly output merging later

 Data is passes between processes in TBuffers – adding extra serialize
and de-serialize steps

 Investigate, adding an unique identifier and build TTreeIndex
 Also limit use of entry number

ROOT I/O Workshp, CERN, 20 June 2018 ATLAS Event Storage Group 11

Summary/
Outlook

 For Run 3, ATLAS is developing a data driven, multithreaded event
processing framework AthenaMT

 ATLAS I/O components have been adapted and are safe to use in
AthenaMT

 current solutions (serialization in some areas) do not appear to create
bottlenecks

 that can change with time as AthenaMT is used for different workflows

 AthenaMT likely will not completely replace AthenaMP and recent
(and future) improvement to I/O in multi-process mode are
important.

 For Run 4 (and therefore in Run 3), LHC needs to move beyond just
multithreaded:

 HEP-CCE Scalable IO Workshop:
https://indico.fnal.gov/event/ANLHEP1383/

ROOT I/O Workshp, CERN, 20 June 2018 ATLAS Event Storage Group 12

https://indico.fnal.gov/event/ANLHEP1383/

