
ATLAS: ROOT I/O for
multithreaded Athena
ROOT I/O Workshop, June 20th 2018

Peter van Gemmeren (ANL), Marcin Nowak (BNL)

Outline

 AthenaMT

 Athena Framework I/O Components

 Input
 Read Mutex

 Output
 Write Mutex

 xAOD and dynamic attributes

 TTreeCache improvements

 TTree entry number and object references

 Summary

ROOT I/O Workshp, CERN, 20 June 2018 ATLAS Event Storage Group 2

Multithreaded
AthenaMT

 For Run 3 ATLAS has developed a multithreaded framework called
‘AthenaMT’, based on GaudiHive.

 supports processing of multiple Events concurrently

 each Event occupies a ‘slot’

 the number of slots if chosen at runtime and remains constant

 each slot (Event) uses a separate transient Event Store identified by
an EventContext

C. Legget t 2016- 02- 26
6

AthenaMT / Gaudi Hive

• Gaudi Hive: multi-threaded, concurrent extension to Gaudi

• Data Flow driven
► Algorithms declare their data dependencies
► Scheduler automatically executes Algorithms as data becomes available.

• optimal traversal of graph possible if avg. Algorithm runtimes known

• Multi-threaded
► Algorithms process events in their own thread, from

a shared Thread Pool.

• Pipelining: multiple algorithms and events
can be executed concurrently
► some Algorithms are long, and produce data that

many others need (eg track fitting). instead of
waiting for it to finish, and idling processor, start a
new event.

• Algorithm Cloning
► multiple instances of the same Algorithm may exist,

and be executed concurrently, each with different
Event Context.

► legacy : one instance, non-concurrent
► cloneable : one or more instances, in its own thread
► re-entrant : once instance, executed concurrently by

multiple threads

t i me

 The framework schedules algorithms to
process Event data

 data driven algorithm scheduling

 concurrent / non concurrent algorithms

 Framework components and services
(including the I/O services) need to be able
to work in multi-threaded and multi-event
environment

 need EventContext to access Event state

 need to handle concurrent requests

 Reentrant or using mutex locking to
serialize execution

ROOT I/O Workshp, CERN, 20 June 2018 ATLAS Event Storage Group 3

Simplified
Athena I/O
Components
(Single Event)

APR:Database ROOT

APR:Database ROOT

APR:Database ROOT

Store
Gate

POOL
Svc

Output Stream

Scheduled bulk
write algorithm with

configurable
Itemlist

On-demand single
object retrieval

Conversion
Service

optional
T/P conversion

 StoreGate – transient Event Data store

 Conversion Service – Gaudi-style conversion service managing (AthenaPool) Converters
 Converters – templates specialized by type, can be generated automatically
 ATLAS-specific Transient/Persistent (T/P) conversion framework (for Schema Evolution)

 PoolSvc – interface layer and persistency manager for APR

 APR:Database – logical storage unit – ROOT implementation corresponds to a file
 Event Data stored in a single TTree, every StoreGate object in a top level TBranch

 Dynamic object attributes also use top-level branches

 Dynamic Attribute Reader – xAOD object extension for reading dynamic attributes

Dynamic Attr Reader

On-demand single
attribute retrieval

ROOT I/O Workshp, CERN, 20 June 2018 ATLAS Event Storage Group 4

Input

 Read steps:
 Single objects, on demand

 PoolSvc + APR + ROOT
 locate object using its Ref

 Database, Row, Branch

 disk read (TTreeCache)

 branch de-compression

 object de-serialization

 attach Dynamic Attribute Reader to xAOD objects

 Gaudi-style converter:
 Persistent to Transient conversion

 Attach transient object to its proxy in the Event Store

decompress t/p conv.

Compressed

baskets (b)

Persistent

state (P)

Transient

state (T)

Baskets (B)

streamread

Input File

ROOT File (F)

APR:Database ROOT

APR:Database ROOT

Store
Gate

POOL
Svc

On-demand
single object

retrieval

Conv.
Service

Opt.
T/P

Dynamic Attr
Reader

On-demand single
attribute retrieval

ROOT I/O Workshp, CERN, 20 June 2018 ATLAS Event Storage Group 5

Read Mutex

 I/O Services modified (mutexed) to make Athena input multi-threaded:
 PoolSvc - ensures that only one thread can use a particular instance of

APR:Database at the time

 Currently ATLAS uses three instances of APR:Database. One each for reading,
writing, and conditions reading

 Reading and writing happens concurrently (different files)

 An APR:Database corresponds to a single TFile

 One could create multiple APR:Database instances for reading a file in parallel

 ATLAS software can create separate APR:Database instances for different data types
to be read

 This would multiply the instances of ROOT TFile, TTree and TTreeCache, but each
cache would only hold a subsection of the TBranches , so memory costs are limited

 Concurrency by event: Because data is stored in baskets, clusters of events, this
could lead to multiple decompression of the same basket, so ATLAS doesn’t plan
to do this.

 ConversionSvc - only one thread can use a particular instance of Converter at
the time

 Converters (Gaudi-style) - single instance per transient object type

 T/P Converters keep a lot of internal state – easier to protect them as a whole

 (also protecting against concurrent use of a converter for read and write)

 as ATLAS uses many different types, lock waits should be rare

ROOT I/O Workshp, CERN, 20 June 2018 ATLAS Event Storage Group 6

Output

 Write steps:
 OutputStream loops over output-list objects in a given transient

Event Store (slot):

 Gaudi-style converter:

 Persistent to Transient conversion

 PoolSvc using ROOT:

 Object serialization

 xAOD objects – write all selected Dynamic Attributes

 OutputStream is an algorithm – writes a complete Event (TTree row)

 Can only write a single Event to a given APR:Database

 At the end of the OutputStream execution TTree::Fill() is called

 TTree compression

 Disk write

 using AutoFlush

APR:Database ROOT
Store
Gate

POOL
SvcOutput

Stream

Conv.
Service

Opt.
T/P

ROOT I/O Workshp, CERN, 20 June 2018 ATLAS Event Storage Group 7

Write Mutex

 Even though, OutputStream loops
over objects, converter of different
type can be dispatched
concurrently

 Possible to convert Type A for
event N concurrently with
converting Type B for event M.

 Currently, ATLAS uses a single,
mutexed APR:Database for
writing:

 Allowing ROOT implicit
multithreading.

APR:Database 1 includes ROOT write

Obj. 1
Type A

createRep

Converter A incl. T/P

Obj. 2
Type A

createRep

Obj. 1
Type A

Done

APR:Database
unlocked

Obj. 2
Type A

Done

Obj. 3
Type B

createRep

APR:Database
unlocked

Not Yet:
APR:Database 2

Obj. 4
Type B

createRep

Obj. 3
Type B

Not
Done

Converter B

Converter
unlocked

Obj. 3
Type B

Done

Obj. 1
Type A

register
Write

Converter A
unlocked

Obj. 2
Type A

register
Write

Obj. 3
Type B

Done

Obj. 4
Type B

Done

Converter A
unlocked

Stream 1 Stream 2

 Possible extension would be separate APR:Database for each Stream:

 Only for I/O intense workflows like Derivation.

 Not clear that all production will move to AthenaMT, AthenaMP will remain
important.

 Good experience with recently deployed shared I/O for Derivation

ROOT I/O Workshp, CERN, 20 June 2018 ATLAS Event Storage Group 8

ATLAS xAOD
and dynamic
attributes

 In Run 2, ATLAS has moved to a more advanced Event Data Model – xAOD

 xAOD type objects have fixed (compile time defined) and dynamic (run time
defined) data members kept in ‘stores’

 The fixed (static) stores have dictionaries

 all data read and written in a single I/O operation

 ROOT split-level can be configured

 Dynamic attribute stores have no dictionaries

 Each attribute from the dynamic store is written into its own branch “by hand”

 Attributes themselves do have dictionaries

 Dynamic attributes are not read back at the same time as their xAOD objects,
but are retrieved one by one only when they are actually accessed

 all xAOD attributes have special accessors

 Possibility for concurrent reads from the same TFile!

 From concurrently running algorithms accessing dynamic attributes of different
xAOD objects

 ATLAS data files can have up to several thousand top-level branches, most of
them for dynamic attributes

 Efficient Caching is very important

ROOT I/O Workshp, CERN, 20 June 2018 ATLAS Event Storage Group 9

Recent
TTreeCache
improvements
(David Clark,
ANL SULI
2017)

 Preloading and Retaining Clusters
 Branches will load an entire clusters into memory

 Branches will keep the current and previous cluster in memory

ROOT I/O Workshp, CERN, 20 June 2018 ATLAS Event Storage Group 10

Future
Improvements
to ATLAS
TTree
Navigation
(Nikita Dulin,
ANL SULI
2018)

 ATLAS currently makes extensive use of ROOT TTree entry
number as an external reference for object retrieval

 For several newer ROOT features, mainly those using TMemFile,
the entry number reported by TTree::GetEntries() may not be the
same as the entry number in the physical file.

 Prevents ATLAS from adopting these features

 ATLAS recently introduced a SharedWriter concept:
 In multi-process (MP) Athena a dedicated process is writing,

collecting output from all other processes

 no need to perform a very costly output merging later

 Data is passes between processes in TBuffers – adding extra serialize
and de-serialize steps

 Investigate, adding an unique identifier and build TTreeIndex
 Also limit use of entry number

ROOT I/O Workshp, CERN, 20 June 2018 ATLAS Event Storage Group 11

Summary/
Outlook

 For Run 3, ATLAS is developing a data driven, multithreaded event
processing framework AthenaMT

 ATLAS I/O components have been adapted and are safe to use in
AthenaMT

 current solutions (serialization in some areas) do not appear to create
bottlenecks

 that can change with time as AthenaMT is used for different workflows

 AthenaMT likely will not completely replace AthenaMP and recent
(and future) improvement to I/O in multi-process mode are
important.

 For Run 4 (and therefore in Run 3), LHC needs to move beyond just
multithreaded:

 HEP-CCE Scalable IO Workshop:
https://indico.fnal.gov/event/ANLHEP1383/

ROOT I/O Workshp, CERN, 20 June 2018 ATLAS Event Storage Group 12

https://indico.fnal.gov/event/ANLHEP1383/

