
https://root.cern

ROOT
Data Analysis Framework

The Swiss Army Knife for
Datasets Manipulation and
Analysis

D. Piparo (CERN, EP-SFT) for the ROOT team

https://root.cern

This talk

▶ Motivation for a ROOT Data Frame - RDataFrame (RDF)

▶ IO Features
● Parallelism

● Reading ROOT datasets

● Reading from any kind of data source

● Writing datasets

▶ The future

2
https://www.swiss-store.co.uk/

RD
ata

Fra
me

https://root-forum.cern.ch/t/rdataframe-a-modern-tool-to-manipulate-and-analyze-root-datasets/29384/2
https://www.swiss-store.co.uk/

Why A Data Frame?

▶ Originally: allow to express analyses with functional chains

● Productive programming model

● Allow implicit parallelisation and transparent optimisation

◼ Also hiding event loop

● Check code sanity at compile time as much as possible

▶ Read ROOT columnar format

▶ Follow the trends in industry (Spark, Pandas)

3

https://indico.cern.ch/event/505613/contributions/2228338

4

Analysis as Data-Flow

// d2 is a new data-frame, a transformed version of d

auto d2 = d.Filter("x > 0")

 .Define("z", "x*x + y*y");

// make multiple histograms out of it

auto hz = d2.Histo1D("z");

auto hxy = d2.Histo2D("x","y");

data filter
x > 0

histo
x,y

histo
z

define
z

d

d2

… We did it in C++ and made it
available in Python with
PyROOT

Go Parallel!

ROOT::EnableImplcitMT()

5

A single statement to activate internal
parallelisation (and thread safety)

See online doc for more details.

https://root.cern/doc/master/namespaceROOT.html#a06f2b8b216b615e5abbc872c9feff40f

Results: Foreseen and
Unexpected

Results and Side Effects

▶ ROOT 6.10: Experimental::TDataFrame, 6.14 ROOT::RDataFrame
● Tens of users, 185 posts on the forum
● Multithreaded analysis accessible to the masses
● Everything works in sequential and IMT, same programming model

▶ Several improvements (doc, performance, scaling) and bug fixes in all
corners of ROOT

▶ Prominent I/O related features
● Read the same tree in parallel
● Snapshot write RDF content on disk: same TTree written in parallel
● Read non ROOT datasets

7

Read The Same Dataset in Parallel

▶ Partially supported by ROOT already
● One TFile opened per thread
● Needed to adapt to task based model!

◼ E.g. one cluster of events per task (avoid duplicated
decompression, deserialisation)

● Build on solid lower level interfaces, e.g. TTreeProcessorMT
▶ Some pieces were missing, e.g. optimisation for MT usage of

TTreeReader{value,array}

▶ Reduction of critical sections’ size, e.g. at file opening
● Check of streamer info record w/o interaction with type system

8

Write out Trees, also in Parallel

▶ Now possible to snapshot the columns of a data frame in a ROOT

dataset

● Multiple threads writing the same TTree

● Low level interface used: TBufferMerger

▶ Easiest way to produce a ROOT dataset (see next slide)

● It is also typesafe!

9

The content of a RDataFrame can be written to
ROOT files as TTree, also in parallel

Easy Creation of Datasets

10

https://root.cern/doc/master/df007__snapshot_8C.html

https://root.cern/doc/master/df007__snapshot_8C.html

Easy Creation of Datasets In Parallel

11

See Guilherme’s talk!

Go parallel with a single line

https://root.cern/doc/master/df007__snapshot_8C.html

https://indico.cern.ch/event/715802/contributions/2942565/
https://root.cern/doc/master/df007__snapshot_8C.html

Data Sources - RDataSource

▶ RDataSource: exposes input data to RDataFrame
▶ In release: RCsvDS, RArrowDS

● Others available RMDFDS
● More coming: RXAodDS !

▶ The analysis code is decoupled from the type of source
▶ RDataSource is an interface: anyone can implement her own RDS!
▶ Easy to convert to ROOT datasets with Snapshot!

12

ROOT is now a framework to analyse potentially
any columnar dataset, not only TTrees

https://root.cern/doc/master/classROOT_1_1RDF_1_1RCsvDS.html
https://root.cern/doc/master/classROOT_1_1RDF_1_1RArrowDS.html
https://github.com/bluehood/mdfds

The Future

Thoughts About the Future - 1

Achieving parallel reading, writing and processing was not easy

▶ ROOT’s global lock, automatic registration of objects into global book-keeping
▶ It will be harder and harder to further parallelise

To support Run3 analysis and beyond, (even) faster reading is required

▶ Reading the value of a column for several entries in one go may be beneficial
● A “Fast-Path”

▶ RDataSource to shield users from any hurdle in the programming model
▶ Leverage in-memory caching (landscape will change, we’ll not have just RAM)

14

Thoughts About the Future - 2

Presently the event loop is entry based

▶ A dataset with N rows can be reduced to a dataset with N - K rows, K>=0
▶ There might be the need for overcoming this constraint (associations of entities

such as vertices and tracks in a continuous readout system)
▶ Can the RDataSource be of help if we allow the RDataFrame to alter its state?

15

Thoughts About the Future - 3

RDataSource: entry point for a columnar dataset

▶ Interface intended for RDataFrame, not users BUT
▶ a complete and simple low level (void ptrs! Ptr to ptr!) reader of columns
▶ Can we leverage this as a bridge for new IO prototypes?

● New IO, same code for the analysis
● Testable, benchmarkable

16

