
https://root.cern

ROOT
Data Analysis Framework

ROOT Columnar Storage
Evolution

J. Blomer (CERN, EP-SFT)

https://root.cern

This talk▶ The problem we are solving

▶ The contracts of the new interface

▶ Code examples

2

The Tree

▶ ROOT’s column-wise collection format is empirically the best we can do
● A solution designed by us for our very problem

▶ Only few other column-wise formats
● Apache Parquet (Google Dremel): optimized for deep, sparse

collections: our data is not sparse
● Apache Arrow: in-memory only format

▶ ROOT’s unique feature: seamless C++ integration
● Users do not need to write/generate schema mapping

(which is lots of boilerplate code)

3

Goals

▶ Speed
● Design for vectorized and bulk I/O
● Stay columnar even in deeply nested structures

▶ Robust interfaces
● Compile-time safety if necessary
● Separation of concerns to simply I/O extensions such as

new storage systems
▶ Indicate sorted columns for indexing (e.g., timestamps)
Challenging but opportunity to deprecate least used features
Note: RDataFrame covers many current TTree use cases

4

class Hadron;

class Jet {

 std::vector<Hadron> hds;

};

class Event {

 std::vector<Jet> jets;

};

How we want to get there

▶ Separate high-level logical data layout (C++ classes)
from low-level physical data layout (columns of simple types)
● Mapping of data to storage devices only needs to know the low-level types
● For simple classes (e.g. struct of float), in-memory representation should equal

on-disk representation
● Building block for vectorization and bulk I/O

▶ On the logical data layout: separate between static part (Schema /
Tree Model) and dynamic part (entries that are being read and
written)
● A tree schema is composable, natural support for friend trees
● Multiple entries for the same tree model can exist in parallel: building block for

multi-threading

▶ Asymmetric interfaces for reading and writing
● Saves locking logic when reading data 5

Sketch of the updated columnar layout

▶ TTree

▶ New design: “unfolded” nesting (same data volume)

6

using Collection = std::vector<float>

class Event {

 std::vector<Collection> outer;

 float flat;

};f1 fn

O1 On...

f1 fn

O1 Om

The contracts of the new interface

▶ New classes
● RTreeModel: branch names and types, composable

◼ Can be shared by multiple trees
● RTreeSource, RTreeSink: storage strategy

◼ Either writing or reading
● RTreeView

◼ Lazy branch access, natural underpinning for TTreeReaderValue
▶ Interfaces

● Explicit pointer ownership, entries are shared between the tree and the user code
● Compile-time type-safety where possible (Branch<Event>)
● Possibility to calculate values on Fill()
● Vector interfaces: optimise reading/writing n entries at a time
● Reading through hierarchical iterators (clusters, entries)

7

Milestones for 2018

▶ Prototyping phase
● Define the user interface
● Identify new classes
● Demonstrator for reading and writing nested Ntuples of

fundamental types of different size (say, float and long)

8

Sample Code: TreeModel

auto tree_model = std::make_shared<RTreeModel>();

auto event = /* shared pointer to Event */

 tree_model->Branch<Event>("my_event" /*, { constr args }*/);

auto h1_px = tree_model->Branch< float>("h1_px ", 0.0);

auto track_model = std::make_shared<RTreeModel>();

auto track_energy = track_model->Branch< float>("energy");

auto tracks = tree_model->BranchCollection("tracks", track_model);

// Resolves to branches "tracks" and "tracks.energy"

9

Ideas for more advanced writing

// calculate on fill from other values

tree_model->Branch< float>("is_exotic")->Bind(

 [event = event]() -> float { return (event->fEnergy < 0) ? 0.9 : 0.1; });

// Allow to capture a user provided shared pointer

auto calibration = std::make_shared<TCalibration>();

tree_model->Branch<TCalibration>("calibration")->Capture(calibration);

// Support decoupled writer modules that don't have the types available

// at compile time; type-checked at runtime using TClass.

auto branch_dynamic = tree_model->BranchDynamic("custom", "TUserClass");

// Can then be bound to a pointer + size

10

Filling
ROutputTree tree(tree_model, RTreeSink::MakeFileSink("/a/b/c"));

// Possible to use other sinks, e.g. TTreeSink::MakeHDF5Sink

// We can reuse the tree model but not the tree medium

// Scalar filling as before

for (auto i = 0; i < 100; i++) {

 tree->Fill();

}

auto entry = tree->CreateEntry();

auto event = entry->Get("event");

...

tree->FillV(/* span (array) of entries */);

11

Reading

// TreeMedium provides file chaining functionality

// could also mix branches from different trees

RInputTree tree(tree_model, RTreeSource::MakeFileSource({ "/tree1",

"/tree2"}));

for (auto e : tree.GetEntryRange()) {

 // Populate shared storage locations given by tree model

 std::cout << px << std::endl;

 std::cout << event->fEnergy << std::endl;

}

12

Two ways of reading:
1) High-level: for analysis - declarative

approach to be adopted (a la TDF)
2) Low-level: for frameworks and

power users
This is the low level approach

Hierarchical iteration

// Hierarchical iteration

for (auto cluster : tree.GetClusterRange()) {

 for (auto entries : cluster.GetEntryRange()) {

 }

}

// Entry ranges could possibly be create more sophistically,

// for instance based on sorted branches such as timestamps

13

Lazy reading

// Open without model, allow for lazy views

RInputTree tree(RTreeSource::MakeFileSource({ "/tree1", "/tree2"}));

auto view_px = tree.GetView< float>("px");

auto view_chi2 = tree.GetView< float>("chi2");

for (auto e : tree.GetEntryRange(RRangeType::kLazy)) {

 if (view_px(e) > 1.0) {

 std::cout << view_chi2(e) << std::endl;

 }

}

14

