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• Characterise and correlate the beam halo to dose  
 

• Implementation of a beam monitor based on 
LHCb VELO technology 

– Capability as a standalone monitor in the clinical 
proton beam at Clatterbridge Cancer Centre (CCC), UK 

– Development for online use with verifiable halo maps 
 

• Investigate integration of beam monitor in CCC 

– Beamline optics & particle tracking studies 

Overview 
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Introduction – Beam monitors 

• Online dose monitors 

– Gold standard: Ionisation chambers 

 

• Treatment beam measurements: 

– Dose delivered 

– Beam intensity 

– Beam profile 

– Beam position 

 

• Interceptive devices 

– Ionisation correction (type of gas, 
pressure, temperature effects..) 

– Multiple monitors required 

– Degradation of beam 
Mohan & Grosshans, Adv. Drug Deliv. Rev 109 (2017) 

Zhu et al. Cancers 7 (2011) 
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VELO Standalone Beam Monitor 

• Air flow and cooling system 

– Operation in air 

– Prevent condensation 
 

• Electronics and readout 

– To allow individual operation 
without LHC signally 

– DAQ triggering 

– Compact & modified wiring 
 

• Mobility stand 

– Precise movement 
 

• Optimised faraday cup 

– Beam current correlated with 
sensor signal 
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s Max kinetic energy 62 MeV 

RF Frequency 25.7 MHz 

Average beam current 5 nA 

Number of ions 3.12 x1010 /s 

Bunch length 1.37 ns 

R. Schnuerer, J. S. L. Yap et al. Proceedings of IPAC (2018) 
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Implementation in CCC 

• Clatterbridge CC, UK 

– First hospital based proton therapy facility in the world 

– Ocular treatments 

– 60 MeV passively scattered protons 

 

Aluminium pipe removed for integration 
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Cooling pipes 

Beetle chips 

TELL1 board 

Data transmission to 
DAQ PC… 

Motorised stand VELO sensors 

VELO DAQ PC 

Keithley 486 

Picoammeter 

Keysight 8110A  

pulse generator 

Trigger control PC 

SCANDITRONIX 
MC60-PF 
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Beam halo 

• Scattering foils 
– Tungsten 
– Beam shaping element 
– Broadens & flattens 

beam 
 

• Halo 
– Arises due to scatter 

from elements & air 
– Outer edges of beam 
– Radius threshold 

 
 

Development of beam from a double ring scattering system 
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Concept 

B. Gottschalk et. al, PIMB 60 (2015) 

• Beam halo generated from scattering components 

– Surrounding protons which are collimated prior to 
exit 

• Correlate halo region to core of beam 

– Online monitoring of dose delivery 
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• Correlate halo region to dose delivered 

• Halo maps 

– Beam simulations, experimental data 

Halo dose correlation 
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• Correlate halo region to dose delivered 

• Halo maps 

– Beam simulations, experimental data 

Halo dose correlation 

= MU 
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Simulation studies 

• Development of accurate model for the CCC beamline  
• Monte Carlo toolkit: Geant4 

– Beam dynamics 
– Delivery system 

Modelled in Geant4 
(geant410.02.p.01) 

CCC delivery system 
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Geant4 Model 

– A: Double scattering foils, beam stopper 

– B: Range shifter 

– C: Modulation wheel 

– E: Drift pipe => Integration zone 

– G: Ionisation dose monitors 

– H: Nozzle 

Beamline 
(Vacuum) 
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Preliminary Results 

• Bragg peak & energy 
spectrum at isocentre 
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Beam behaviour 

• CCC beamline 

– Beam optics 

– Particle tracking 

 

• Analysis for system integration 

• Beam propagating through the VELO integration zone 

 

• Halo maps 
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Preliminary Results 

• Analysis of the beam propagating through the 
VELO integration zone 
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Model accuracy 

• Geant4 model starts at treatment room 

– Source (= 8cm) before first scattering foil 

– Simulations run with historical information (beam 
size, energy, energy spread)  

 

• How do we know our information is accurate? 

– Verify geometry 

– Experimental validation 

– Combine information upstream 
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CCC Beamline Study 

• Commissioned in ~1984 

• First treatment for protons in 1989 

• No diagnostics in line 

• Approximately 62.5MeV protons produced 
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Beam parameters 

• Input parameters for 
simulation 
– Beam energy 

– Energy spread 

– Beam size 

 

• Uncertainties 
– Beam profile changes 

throughout the delivery system 

– Number of protons, density & 
distribution changes 
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Beam divergence 

• In integration zone, beam diverges by 
~12mm 

• Aperture diameter ~19mm 

y = 0.0278x + 0.9243 
R² = 0.9986 
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Proposed integration  

• Due to increasing divergence, select positions for 
sensor at beginning of integration zone 
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Integration of Si Disc 

• Starting with geometry of arbitrary Si disc  

– Outer diameter 90.5mm 

– Inner aperture radius 9.2mm  

– Thickness 0.6mm 

– Disc placed centrally 

 

 

 

 

 

• Small gap between 
halves (~2.6mm) 

• Aperture radius in 
Sim = 10.5mm 
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How does the sensor affect the beam? 

• With the sensor, could look at: 

– Beam divergence 

– Affect of sensor position on energy loss 

– To see profile widths, if aperture size for sensors is 
appropriate 

 

With conservative 
aperture diameter 

16.4mm, significant 
cut off to beam 
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Energy spectra at isocentre 
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• Decrease of 0.03MeV => ~negligible 



Energy at isocentre 

• What if the sensor is at the other positions? 

R² = 0.9659 

R² = 0.9552 
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What about the input beam size? 

• Ran simulations with larger & smaller beam sizes 
(50% to 200% σ) 
– Results in change to beam profile through out line up to 

~6% ie 0-2mm difference 

• Larger beam profile means more is collimated/cutoff 
– Different lateral profile at isocentre 

– Energy spectrum roughly the same 

– Profile in integration zone changes 

 

=> Affects halo maps & VELO integration 
 

 
28 



Beam size importance 

• Significant for integration! 

 

• Balance! 

– Position of VELO sensors 

– Measurement wanted from beam 

– Energy cut off to beam 

 

• Accurate beam size? 
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Beam behaviour 

• CCC beamline 

– Beam optics 

– Particle tracking 

– Halo maps 

 

• Input parameters for the 
Geant4 model 

– Beam size at source 

 

• To determine the exact 
beam size 

– Emittance studies 

– Twiss parameters 

 

SOURCE 
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CCC beamline study 

• Beam dynamics 
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Twiss functions 

• Using optics code 
(MadX)  

• Generate twiss 
parameters 

• Transport to point 
of interest 
– Used to calculate 

beam size 
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Beam size 

• At the source position of the simulation 
– 15.5m in beamline 

 
 
 
 
 
 
 
 
 
 

– How can this be verified? 
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Beam Emittance 

• Beam property that characterises it’s size 
– Ideally want focusing into a small space with minimum 

divergence 
 

• Way to measure the quality of the beam 
– Key parameters for overall performance of an accelerator 

 

• Particles can be characterised by density in phase space (x, 
px, y, py, z, pz) 
– Area in phase space at single time/location 

 
• Liouville: Under ideal conditions, assume extent of beam 

(=density) in phase space is constant in time 
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Uli Raich , Emittance Measurements, Accelerator Beam 
Diagnostics, USPAS, 2009 
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Beam emittance from profile measurements 

Peter Forck Lecture Notes on Beam Instrumentation and Diagnostics, JUAS 
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Twiss parameters from emittance (QVS) 

• Relationship between 
quadrupole strength & 
beam size 

• Ideal quadratic 
– Equate the 

coefficients to 
transport matrix  

– Determine twiss 
parameters 
 

• Compare measured 
twiss parameters with 
calculated 
 
=> Accurate beam size 

A. T. Green et al. Proceedings of IPAC2015 
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Halo maps 

 Simulations & measurements 

– Transverse beam profile plots 

– Distribution of protons 

 

 But how to actually correlate the halo? 

– Distinct characteristic of beam extent for correlation 

– Beam profile? Distribution? Intensity? 

– Numerical – Parameterisation?  

– Empirical – Benchmark with another detector (MediPix)? 

 

 

Intensity profiles 
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Summary 

• Development of an online beam monitor, design allows 
approach & measurement of beam halo with minimal 
interference 

– Correlation of halo to core will allow online beam 
monitoring 

• Preliminary optics & simulation studies results 

– Emittance studies: Follow up measurements 

– Geant4 model: Experimental validation & additional 

• Integration into the CCC 60 MeV proton therapy beam line 

– Validate & test capabilities of performance  

– Benchmarking with MediPix 

– Halo maps for dose delivery 
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