

Reentrant cavity resonator for low intensities proton beam measurements

ESR: Sudharsan Srinivasan Supervisor: Dr. Pierre André Duperrex

Project Start Date: 01/01/2017

Contents

- **Project Description**
- **Comparison of Diagnostics** ullet
- **Principle of Operation** ullet
- **ANSYS HFSS for BCM**
- Test bench Characterization
- Simulation Vs Measurement
- **ANSYS HFSS for BPM** \bullet
- Future work

Beam Parameters	Value
Repetition Rate	72.85 MHz
RMS Bunch Length	2 ns
Beam Intensity of Interest	1 – 800 nA
Resonator Frequency	145.7 MHz

Passive Transformer

- Short pulsed beams
- Low number of windings
- Low stray capacitance
- High permeability metal shielding

P. Forck, Lecture Notes on Beam Instrumentation and Diagnostics. 2011.

Active Transformer

- Operational amplifier with feedback resistor
- Higher sensitivity
- Low bandwidth
- High permeability torus

P. Forck, Lecture Notes on Beam Instrumentation and Diagnostics. 2011.

P. Forck, Lecture Notes on Beam Instrumentation and Diagnostics. 2011.

Resistive WCM

- Bunch structure observation
- Emittance measurement
- Shielding
- Rarely used
- Thermal noise
- Coupling impedance
- Beam instability

P. Forck, Lecture Notes on Beam Instrumentation and Diagnostics. 2011.

Inductive WCM

- Azimuthal image current distribution
- Positional sensitivity
- Large bandwidth
- Installation is outside beam pipe
- Easy accessibility

P. Forck, Lecture Notes on Beam Instrumentation and Diagnostics. 2011.

Pillbox

- Short pulse and single pulse
- Superior signal sensitivity
- Size limitations
- Mode contamination

R. Lorenz, "Cavity beam position monitors," pp. 53–73, 1998.

Principle of Operation

Lectures

our Scenario

$$L_c = \frac{\mu_o}{2\pi} \ln \frac{b}{a}$$

$$C_{gap} = \varepsilon_o \frac{\pi a^2}{s}$$

$$f = \frac{1}{2\pi} \big[L_c (C_c + C_{gap}) \big]^{-0.5}$$

$$\omega_o = 1/\sqrt{LC}$$
 $f = \frac{1}{2\pi\sqrt{LC}}$

$$C_c = 2\pi\varepsilon_o / \ln \frac{b}{a}$$

Increasing a increases Cgap. Increasing S reduces Cgap

"Microwave Phase Modulators for Smoothing by Spectral Dispersion," LLE Rev., vol. 68, pp. 192–208, 1996.

ANSYS HFSS Simulation

ANSYS HFSS Simulation

ANSYS HFSS Simulation

OMA Workshop on Beam Diagnostics, 05/06/2018

150

300 (mm)

S13 for Ceramic Thickness Vs Resonance Frequency

Mechanical Prototype

Test Bench Design

Simulation Vs Measurement

Status of BCM

- The prototype built and characterized
- Simulation Vs Test bench measurement good agreement
- Deviation from Simulation investigated
- Frequency dependent dielectric constant of MACOR
- Install in the beam line in the coming weeks

Reentrant BPM

PAUL SCHERRER INSTITUT

Reentrant BPM

H Field [A/m]

First Observations

Future Works

- BPM prototype middle of July, 2018
- BPM Test bench measurement
- Fine-tuning of Prototype

Thank You

Questions???

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 675265

