

Implementation of cylindrical PET scanners with block detector geometry in STIR

Parisa Khateri* On behalf of the SAFIR collaboration

*Institute for Particle Physics and Astrophysics, ETH Zurich

D PHYS

SAFIR - Small Animal Fast Insert for MRI S

- Design, construction and characterization of a PET insert for a 7T Bruker BioSpec 70/30 pre-clinical MRI scanner
- Quantitative dynamic PET imaging simultaneous with MRI
- Data acquisition using short-lived isotopes such as ¹⁵O
- An optimized reconstruction software

Institute for Particle Physics and Astrophysics - ETH Zurich Institute for Pharmacology and Toxicology - University of Zurich Institute for Biomedical Engineering - ETH Zurich Clinic of Nuclear Medicine - University of Zürich Instituto de Física Corpuscular - Universitat de València Institute for Biomedical Engineering - ETH Zürich Department of Nuclear and Quantum Engineering – KAIST - South Korea Institute of Medical Technology - Otto-von-Guericke University - Magdeburg Institute of Cardiovascular and Metabolic Medicine - University of Leeds Institute of Computer Engineering - University of Heidelberg

PET - Positron Emission Tomography

PET - Positron Emission Tomography

Iterative Reconstruction

• Reconstruct images by MLEM or OSEM.

Iterative Reconstruction

• Reconstruct images by MLEM or OSEM.

Iterative Reconstruction

• Reconstruct images by MLEM or OSEM.

DPHYS

STIR – Software for Tomographic Image Reconstruction

- MLEM: Maximum Likelihood Expectation Maximization
- OSEM: Ordered Subset Expectation maximization
- Siddon's algorithm

STIR – Software for Tomographic Image Reconstruction

- Block vs. Cylindrical
 - Scanner model θ
 Projection data bins t
 - System matrix
 - Symmetries to speed up the calculation

S

- Gate v7.2
- Scanner: SAFIR prototype
 - 2 blocks in axial direction
 - 24 blocks in trans-axial direction

- Gate v7.2
- Scanner: SAFIR prototype
 - 2 blocks in axial direction
 - 24 blocks in trans-axial direction
- Phantoms:
 - 1. Derenzo phantom

- Gate v7.2
- Scanner: SAFIR prototype
 - 2 blocks in axial direction
 - 24 blocks in trans-axial direction
- Phantoms:
 - 1. Derenzo phantom
 - 2. Uniform cylinder

- Gate v7.2
- Scanner: SAFIR prototype
 - 2 blocks in axial direction
 - 24 blocks in trans-axial direction
- Phantoms:
 - 1. Derenzo phantom
 - 2. Uniform cylinder
 - 3. Rotating plane

Reconstruction

- Projection bins: of about ~4M
- Normalization Correction (NC)

Sinogram of the plane source

Sinogram of normalisation factors

DPHYS

Reconstruction

- Projection bins: of about ~4M LORs
- Normalization Correction (NC)
- Attenuation Correction (AC)
- OSEM: Ordered Subset Expectation maximization
 - 6 subsets, 24 iterations

Results Uniform cylinder phantom

Cylindrical Block 60 mm Ø Without NC With NC

DPHYS

Results Uniform cylinder phantom

Block Cylindrical 60 mm Ø Without NC With NC

coefficient of variation (CoV): $\frac{\text{standard deviation}_{ROI}}{\text{mean}_{ROI}}$

Reconstruction Method	Correction	CoV
Cylindrical	Without NC	33.2%
Block	Without NC	18.4%
Cylindrical	With NC	25.8%
Block	With NC	20.9%

Results Derenzo phantom

Without NC

With NC

Results Line profiles through Derenzo phantom

| 19

Results Derenzo phantom

Summary

- Image reconstruction for the SAFIR PET scanner is implemented using STIR.
- An accurate system matrix is necessary for quantitative PET image reconstruction.
- The scanner model as a key component to the system matrix is simplified in STIR.
- A realistic scanner model has been implemented in STIR.
- The new model enhanced the image quality in terms of Resolution and Uniformity.
 - decrease the partial volume effect and enhance the contract

Acknowledgement

- Robert Becker
- Alfred Buck
- Volker Commichau
- Diogo Di Calafiori
- Guenther Dissertori
- Lubomir Djambazov
- Afroditi Eleftheriou
- Jannis Fischer
- Peter Fischer

- Mikiko Ito
- Jisoo Kim
- Werner Lustermann
- Josep F. Oliver
- Christian Ritzer
- Michael Ritzert
- Ulf Roser
- Markus Rudin
- Iaria Sacco

- Paola Solevi
- Charalampos Tsoumpas
- Geoffrey Warnock
- Bruno Weber
- Matthias Wyss
- Agnieszka Zagozdzi nska-Bochenek
- Kris Thielemans

Thank you!

Simulation data

- Gate v7.2
- Scanner: SAFIR prototype
 - 2 blocks in axial direction
 - 24 blocks in trans-axial direction
 - 8×8 detector blocks
 - dodecagon prism
 - Length: 32.20 mm
 - Inner radius: 67.75 mm
- Phantoms:
 - 1. Derenzo phantom:
 - 100 MBq of ¹⁸F
 - acquisition time: 5 s
- Energy window: [350, 650] keV
- Coincidence time window: 1 ns

- 2. Uniform cylinder:
 - water-filled cylinder (25 mm × 60 mm Ø)
 - 100 MBq of 18F
 - acquisition time: 2.5 min

- 3. Rotating plane:
 - plane (32 mm × 120 mm)
 - 6 equally spaced angles
 - acquisition time: 80 min per position
 - back-to-back 511 keV gammas

DPHYS

Results Derenzo phantom

