PAUL SCHERRER INSTITUT

Jiani Gao :: PhD Student :: Paul Scherrer Institut B. Auchmann (CERN/PSI), L. Brouwer (LBNL), S. Caspi (LBNL), J. Mazet (CERN), G. Montenero (PSI), S. Sanfilippo (PSI)

Quench Protection of CCT-Type High-Field Magnets for Accelerators

Work supported by the Swiss State Secretariat for Education, Research and Innovation SERI Annual Meeting of the Swiss Physical Society, 28-31 August 2018, EPFL

- Problem Description
- Simulation Methods
- Detection & Protection Concepts
- Future Work

Quench Protection

Quench: transition from superconducting to normal-conducting state
 *R*_{quench} *¬* Joule heating in Cu, causing *T ¬* in normal zone

- Protection: dissipate magnetic energy as heat or quench entire coil to limit $T_{\rm peak}$ and avoid damage in coil
- Different phases in a quench: - I constant, heat propagation: 1a. Detection Δt_{thres} 1b. Validation Δt_{val} - I decreases, energy dissipation by Joule heating: 2a. Protection Δt_{prot} 2b. Discharge Δt_{dec} $\Delta t_{\text{thres}} \Delta t_{\text{val}} \Delta t_{\text{prot}} \Delta t_{\text{dec}} t$

Time in ms!

• Magnet design efficiency: less time – less Cu fraction – smaller coil

Simulation Methods

- Study quench phenomenon in two-/four-layer CCT geometry
 - Use of ANSYS User-Defined Elements (UDEs) developed at LBNL
 - Thermal: multi-dependency material properties
 - Electromagnetic: effects of cable-eddy currents
- Coupled quench simulation in a hierarchical approach
 - 1. MIITs adiabatic calculation (Joule heat source) \rightarrow time budget
- 2. MATLAB adiabatic integrator (update on R(t)) \rightarrow current decay
 - 3. Magnetostatic & Electrothermal model \rightarrow quench propagation
- 4. Electrothermal & Electromagnetic model (UDEs) \rightarrow protection methods
 - 5. Electromagnetic-thermal full model of model magnets

Detection Concepts

- Study different detection & protection concepts and design a fast and efficient protection system for CCT
- 1. Voltage detection using co-wound Cu wires: V ↗ (/ cst)
 - Low-risk but $\Delta t_{
 m val}$ obligatory
- 2. Current detection using co-wound SC wires: / ↘ (V cst)
 - Expect to eliminate $\Delta t_{
 m val}$; can be studied in detail

- 3. Co-wound optical fibers: temperature and strain data from analysis of spectral shift (Rayleigh backscattering spectra)
 - High-risk but shorter delay time; collaboration with Penn State Univ.

L. Bottura. Superconductors. Presentation, 2012.

M. Marchevsky. Protection of superconducting magnet circuits. Lecture notes of USPAS, 2017.

Protection Concepts

- Energy extraction: suitable for a single-magnet system; basic method for R&D magnets
- Coupling-Loss Induced Quench (CLIQ): / oscillations → coupling losses (heat) → quench; most promising method
- 3. Inductive protection using co-wound Cu tapes: quench process enhancement

L. Bottura. Superconductors. Presentation, 2012.

M. Marchevsky. Protection of superconducting magnet circuits. Lecture notes of USPAS, 2017.

Protection of Two-layer Model Magnet CD1 with Energy Extraction (+ Voltage Detection)

/ [kA]	<i>B</i> [T]	$\Delta t_{ m thres}^{ m ref}$ [ms]	$\Delta t_{ m thres}^{ m ANSYS}$ [ms]	MIITs [MA ² S]	<i>T</i> _{max} [K]
18	11	23.5	3.8	7.6	199
15.5	9.5	33.5	12	7.5	193
12	7.3	59	26.9	6.8	145

Temperature profiles along the coil at different times

ightarrow Good time margin and temperature margin

 \rightarrow CD1 protectable with energy extraction; test-bed for other detection & protection methods

- Continue studying different protection concepts, especially CLIQ, via coupled simulations in two-/four-layer CCT magnets
- Implement, test and validate the detection & protection system in two-layer model magnet that will be built at PSI during the thesis

Wir schaffen Wissen – heute für morgen

My thanks go to

- Bernhard Auchmann
- Lucas Brouwer
- Giuseppe Montenero
- Gabriella Rolando
- Stephane Sanfilippo
- Federico Scurti

