$u^{\scriptscriptstyle b}$

D UNIVERSITÄT BERN

AEC ALBERT EINSTEIN CENTER FOR FUNDAMENTAL PHYSICS

Bottom Squark searches in Decay Chains with the Higgs Boson

SPS Annual Conference - Lausanne

Thomas Weston

https://cds.cern.ch/record/2632345

29.08.18

Introduction

- Complex decay chain of sbottom supersymmetric partner to bottom quark.
- All branching ratios assume 100% apart from SM-like Higgs.
- Exploiting the dominant decay of Higgs:
 - final state with multiple b-jets and E_T^{miss} .

D UNIVERSITÄT BERN

AEC ALBERT EINSTEIN CENTER FOR FUNDAMENTAL PHYSICS

Signal Models and Previous Limits

• produces an on-shell Higgs.

• limits set by LEP to ~ 60 GeV.

b

U

Analysis Strategy

- 3 Signal Regions target different mass hierarchies:
 - Majority of both models (SRA)
 - Compressed regions (SRB & SRC) •
- Control and Validation regions model and validate the SM backgrounds.

4

 $u^{\scriptscriptstyle b}$

UNIVERSITÄT BERN

b

p

h

 $\tilde{\chi}_1^0$

AEC ALBERT EINSTEIN CENTER

FOR FUNDAMENTAL PHYSIC

SRA Overview

- b UNIVERSITÄT BERN AEC ALBERT EINSTEIN CENTER FOR FUNDAMENTAL PHYSICS
- SRA covers majority phase space of both signal models.
- Designated MaxMin algorithm used to identify one Higgs candidate.

SRA Overview

- m_{eff} main discriminating variable.
- m_{eff} phase space split into 3 orthogonal SRs + SR-inclusive.
- Simultaneous fit of these SRs provides exclusion power.

Variable	SRA	SRA-L	SRA-M	SRA-H
m _{eff} [TeV]	> 1.0	∈ [1.0, 1.2]	∈ [1.2, 1.5]	> 1.5

 $u^{\scriptscriptstyle b}$

D UNIVERSITÄT BERN

AEC ALBERT EINSTEIN CENTER FOR FUNDAMENTAL PHYSICS

SRB Overview

$\boldsymbol{u}^{\scriptscriptstyle \mathsf{b}}$

UNIVERSITÄT BERN AEC ALBERT EINSTEIN CENTER FOR FUNDAMENTAL PHYSICS

Modified MaxMin Algorithm

- Loop over all combinations.
- minimise max ΔR of both b-jet pairs. i.e. minimises max $\Delta R(b_1, b_2; b_3, b_4)$

- Targets compressed region of $\Delta m(\tilde{\chi}_2^0, \tilde{\chi}_1^0) = 130 \text{GeV}$ model using ISR scenario.
- Due to soft (5-20 GeV) b-jets, don't pass p_T > 30 GeV requirement.
- loss of two b-jets requires modification of MaxMin algorithm.

7

- Targets compressed region of $m(\tilde{\chi}_1^0) = 60 \text{GeV}$ model.
- Highly boosted scenario.
- Object based MET significance variable becomes key!

object-based MET Significance Variable

$$S^{2} = 2 \ln \left(\frac{\mathcal{L}(\overrightarrow{E_{T}^{miss}} = \sum_{i} \overrightarrow{E_{T}^{miss}}^{Reco})}{\mathcal{L}(\overrightarrow{E_{T}^{miss}}^{Truth} = 0)} \right)$$

• log likelihood ratio which accounts for the differing resolutions.

https://cds.cern.ch/record/2630948/files/ATLAS-CONF-2018-038.pdf

b

UNIVERSITÄT BERN

AEC ALBERT EINSTEIN CENTER FOR FUNDAMENTAL PHYSICS

ั้น

Background Estimation

- SRA and SRB ttbar is dominant.
- Orthogonal through lepton and b-jet multiplicity.
- Background-only fit is performed using the CRs and scale factors are used to normalise the SRs.

b

UNIVERSITÄT

U

- Control region event yields compared to SM MC predictions.
- All scale factors are consistent with 1, suggesting good modelling.
- All uncertainties include statistical and systematics.

Results

UNIVERSITÄT BERN

AEC ALBERT EINSTEIN CENTER

FOR FUNDAMENTAL PHYSICS

- Results of background-only fit extrapolated to all signal regions.
- Normalisations calculated from scale factor in control regions.
- No significant excess found in any signal region.

Exclusion Limits $\Delta m(\tilde{\chi}_2^0, \tilde{\chi}_1^0) = 130 \text{GeV}$

 $u^{\scriptscriptstyle b}$

UNIVERSITÄT BERN

- Combined exclusion contour at 95% CL on DM130 signal scenario.
- Observed limit up to 1.15 TeV in sbottom mass.
- Previous result (CMS) up to 0.5 TeV in sbottom mass.
- SRA optimal in bulk; SRB optimal in compressed scenarios.

Exclusion Limits $m(\tilde{\chi}_1^0) = 60 \text{GeV}$

 u^{b}

UNIVERSITÄT BERN

- Combined exclusion contour at 95% CL on M60 signal scenario.
- Observed limit up to 1.4 TeV in sbottom mass.
- Previous result up to 0.75 TeV in sbottom mass.
- SRA optimal in bulk; SRC regions optimal in compressed scenarios.

Conclusions

- Search for complex sbottom decays involving Higgs boson.
- Signal regions developed using Higgs identification algorithm.

- Exclusion limits at 95% CL up to 1.4 TeV sbottom mass on m60 model.
- Exclusion limits at 95% CL up to 1.15 TeV sbottom mass on DM130 model.
- Significant increase in exclusion on both models.

https://cds.cern.ch/record/2632345

AEC ALBERT EINSTEIN CENTER

FOR FUNDAMENTAL PHYSIC

UNIVERSITÄT BERN AEC ALBERT EINSTEIN CENTER FOR FUNDAMENTAL PHYSICS

Thanks for listening, questions?

Backup

Technicalities: Object Definitions

- MET triggers are used for 0-lepton regions.
 - plateau at MET > 250 GeV.
- Single-lepton triggers used for >=1lepton regions.
 - plateau at pT > 27 GeV.
 - trigger matched.

SRA

Region A Definitions

		/		0	
Variable	Units	SRA-inclusive,L,M,H	VRA0ℓ,L,M,H	CRA1ℓ,L,M,H	
Event Cleaning			1		
$E_{\rm T}^{\rm miss}$ Trigger			\checkmark		
$E_{\mathrm{T}}^{\mathrm{miss}}$	[GeV]	> 250			
$\min^{1}[\Delta\phi(\text{jet}_{1-4}, E_{\text{T}}^{\text{miss}})]$	[rad]	> 0.4		-	
N_{leptons} (baseline)		0		1	
$N_{\rm leptons}$ (signal)		0		1	
p_{T}^{1l}	[GeV]	-		> 20	
m _T	[GeV]	-	> 20		
au veto		-			
N _{jets}		≥ 6			
n_{b-jets}		≥4	3	≥4	
$p_{\mathrm{T}}(b_1)$	[GeV]	> 200		> 100	
S	$[\text{GeV}^{\frac{1}{2}}]$	-	< 25	-	
$\Delta R_{\max}(b,b)$		> 2.5	-	-	
$\Delta R_{\max-\min}(b,b)$		< 2.5	-	-	
$m(h_{\rm cand})$	[GeV]	> 80	-	-	
m _{eff}	[TeV]	> 1, \in [1, 1.2], \in [1.2, 1.5], \ge 1.5			

	-		••	
Variable	Units	SRB	VRB0ℓ	CRB1ℓ
Event Cleaning			1	
$E_{\rm T}^{\rm miss}$ Trigger			✓	
$E_{\rm T}^{\rm miss}$	[GeV]	> 300	> 2	250
$\min[\Delta\phi(\text{jet}_{1-4}, E_{\text{T}}^{\text{miss}})]$	[rad]	> 0.4	4	-
N _{leptons} (baseline)		0		1
N _{leptons} (signal)		0		1
p_{T}^{1l}	[GeV]	-		> 20
m _T	[GeV]	-		> 20
au veto		✓		-
N _{jets}			≥ 4	
<i>n</i> _{b-jets}		≥4	3	≥4
leading jet non b-tagged			✓	
$p_{\mathrm{T}}(j_1)$	[GeV]	> 300 GeV		
$ \Delta \phi(j_1, E_{\mathrm{T}}^{\mathrm{miss}}) $	[rad]	> 2.	8	> 2.2
S	$[GeV^{\frac{1}{2}}]$	-	-	< 25
$m(h_{cand1}, h_{cand2})_{ava}$	[GeV]	∈ [50, 140]	-	-
$m_{\rm eff}$	[TeV]		> 1000	

Region C Definitions

Variable	Units	SRC	VRC0 <i>ℓ</i> -T	VRC0ℓ-Z	CRC1ℓ	CRC2ℓ
Event Cleaning						
Event Cleaning						
Lenton Triggers			• -			
						•
N _{leptons} (baseline)			0		1	2
N _{leptons} (signal)			-		1	2 (SFOS)
$p_{\mathrm{T}}(\ell_1)$	[GeV]	-			> 20	> 27
$p_{\mathrm{T}}(\ell_2)$	[GeV]	-			> 20	-
m_{T}	[GeV]	-			> 20	-
$m_{\ell\ell}$	[GeV]		\in [86, 106]			
N _{jets}		≥ 4				
n_{b-jets}		≥ 3		2		≥ 3
$\min[\Delta\phi(\text{jet}_{1-4}, E_{\text{T}}^{\text{miss}})]$	[rad]	> 0.4	$\in [0.2, 0.4]$	> 0.8		-
$E_{\rm T}^{\rm miss}$	[GeV]		> 250			-
$ ilde{E}_{\mathrm{T}}^{\mathrm{miss}}$	[GeV]		-			> 250
S	$[\text{GeV}^{\frac{1}{2}}]$	> 25, > 27, > 30, > 32	∈ [19, 22]	$\in [23, 24]$	> 20	-
m _{CT}	[GeV]		-			> 200

Background Estimation

Region A: Background Composition

• Background is tt dominated in all bins with similar composition:

Background Estimation - Region C

- SRC dominated by ttbar (CRC1L) and Z+jets (CRC2L).
- orthogonal through MET sig, lepton multiplicity and dPhiJetMET.

Results

SR Yields

	SRA	SRA-L	SRA-M	SRA-H	SRB
Observed events	27	7	12	8	4
Fitted SM bkg events	22.8 ± 3.2	5.8 ± 1.5	9.5 ± 2.0	7.5 ± 1.4	4.0 ± 1.1
tī	15.3 ± 2.7	4.5 ± 1.4	6.3 ± 1.7	4.7 ± 1.3	3.5 ± 1.2
Z+jets	1.5 ± 0.9	0.3 ± 0.2	0.5 ± 0.2	0.7 ± 0.4	0.09 ± 0.08
Single-top	3.1 ± 0.8	0.4 ± 0.3	1.4 ± 0.5	1.3 ± 0.3	$0.24^{+0.26}_{-0.24}$
$t\bar{t} + W/Z$	1.1 ± 0.2	0.2 ± 0.1	0.5 ± 0.2	0.4 ± 0.2	0.09 ± 0.07
$t\bar{t}$ +h	1.3 ± 0.2	0.4 ± 0.1	0.5 ± 0.1	0.3 ± 0.1	0.11 ± 0.03
W+jets	0.4 ± 0.3		$0.28^{+0.33}_{-0.28}$	0.09 ± 0.02	
Diboson	0.10 ± 0.05	$0.00\substack{+0.02\\-0.00}$	0.10 ± 0.04		
	SRC25	5	SRC27	SRC30	SRC32
Observed events	43	3	24	6	1
Fitted SM bkg events	39.8 ± 3.9)	19.1 ± 2.3	8.1 ± 1.5	3.3 ± 0.7
tī	13.1 ± 2.6	5	4.7 ± 0.9	1.2 ± 0.3	0.4 ± 0.1
Z+jets	11.3 ± 3.0)	6.3 ± 1.8	3.1 ± 0.9	1.2 ± 0.4
Single-top	4.3 ± 0.5	5	2.2 ± 0.2	1.1 ± 0.3	0.3 ± 0.1
$t\bar{t} + W/Z$	5.0 ± 1.6	5	2.9 ± 0.9	1.0 ± 0.4	0.5 ± 0.2
$t\bar{t} + h$	0.33 ± 0.05	5	0.18 ± 0.03	$0.01^{+0.02}_{-0.01}$	$0.01^{+0.01}_{-0.01}$
W+jets	4.1 ± 0.4	1	1.7 ± 0.3	1.0 ± 0.3	0.5 ± 0.1
Diboson	1.6 ± 0.4	1	1.2 ± 0.2	0.6 ± 0.2	0.4 ± 0.3