SIMULATIONS AND BACKGROUND ESTIMATIONS FOR DARWIN (DARK MATTER WIMP SEARCH WITH LIQUID XENON)

YANINA BIONDI, UNIVERSITY OF ZÜRICH SPS MEETING, LAUSANNE 31 AUGUST 2018

Contents

- * Why we search for Dark Matter?
- * How we search for Dark Matter
- * The DARWIN experiment
- * Background events in Dark Matter Searches
- * Material screening with GATOR
- * GEANT4 Simulations for gamma background

DARK MATTER IN OUR UNIVERSE

Atoms 23%

Dark Energy 72%

DIRECT DETECTION IN XENON EXPERIMENTS

 $n_e = N_i(1-r) = \frac{E_{dep}}{W_i}(1-r)$

 $E_{dep} = W_i(N_{ex} + N_i)$

$$n_{\gamma} = N_{ex} + rN_i = \frac{E_{dep}}{W_i}(r + N_{ex}/N_i)$$

XENON EVOLUTION

XENON1T PRELIMINARY, The XENON T Dark Matter Experiment, Kaixuan Ni, 2017

8t

XENON10

22 kg

KENON100

161 kg

line and

3.2 t

XENONnT

DARWIN EXPERIMENT

Dual phase time projection chamber (TPC) 50 tons of LXe Low background double-wall cryostat Increase the amount of Sensors (PMTs of 3" diameter, SIPM, and more candidates)

BACKGROUND DISCRIMINATION TECHNIQUES: ER AND NR XENON1T: ER/NR Discrimination

EXPLORING THE ENTIRE ACCESSIBLE WIMP PARAMETER

ROOM ALSO FOR NEUTRINO DETECTION

136Xe: $0\nu\beta\beta$ -decay candidate with a Q-value of 2.458MeV, well above the energy-range expected from a WIMP recoil signal.

ER events from low energetic (pp + ⁷Be) solar neutrinos: Solar neutrinos are an interesting science channel

arXiv:1606.07001v1

MAIN BACKGROUNDS: WIMPS

WIMPS ARE EXPECTED TO PRODUCE NUCLEAR RECOILS WITH THE XENON TARGET MASS

We get NR also from

- * CNNS
- * Neutrons from the materials
- Cosmogenic neutrons

XENON1T: arXiv:1705.01828v1

MAIN BACKGROUNDS - ONBB DECAY

- ER RECOIL BACKGROUND IN THE MEV SCALE.
- THE ONBB DECAY YIELDS TWO 1.23 MEV ELECTRONS WITH OPPOSITE THREE-MOMENTA (NEGLECTING THE NR OF THE ¹³⁶BA DAUGHTER NUCLEUS).

Chiara Capelli, Neutrino 2018 conference

Background contribution in the region MeV from $2\nu\beta\beta^{136}Xe$ and materials

Intrinsic background from impurities ⁸⁵Kr and ²²²Rn

EXTRINSIC RADIOACTIVITY FROM MATERIALS

28 Th ²⁸Th 1.41e+10 Years 1.9 Years Thorium 225 AC α 8.1 Minute Actinium Ra Ra S.S.Days Radium Francium ²²⁰ Rn 55 Seconds Radon Astatine ²¹⁸Po 212 PO 0.14 3e-07 iecond Polonium 212 Bi **B1** Minutes Bismuth 212 Pb 200 Pb Activides Alkali Vietals Stabil Alkaline Earth Metals Lead Halte etc. Vetalloite 208 81 Noble Cases Poor Natala Minut. Transition Metals Thallium

232 Th

12

60 137 Cs 40 K

MATERIAL SCREENING WITH GATOR

Germanium detector placed in LNGS

Low background screening facility

Sensitivity below ~mBq/kg, one of the best in the World

From a stainless steel sample

DARWIN GEANT4 GEOMETRY

Water tank: muon veto

Double walled cryostat

Liquid scintillator: Neutron veto

DARWIN GEANT4 GEOMETRY

Copper rings for electric field shaping

PTFE pillars for structural support making use of its reflective properties

Two disk made from composite material that emulates the background introduced by the sensors

material for Darwin's

TPC

MATERIALS					
(e		55641.7	kg	19.5234	m ³
ke		15.8279	kg	2.68862	m ³
(e	filling	15.1315	kg	0.005309	m ³
(e	filling	3.77925	kg	0.001326	m³
al	Xenon:	55676.4	kg	22.2187	m ³
FE	Reflect	93.5154	kg	0.042507	m ³
FE	Reflect	2.15805	kg	0.000980	m ³
FE	Reflect	2.15805	kg	0.000980	m ³
FE	Long Pi	82.368	kg	0.03744	m³
FE	Short P	1.9008	kg	0.000864	m ³
al	PTFE:	182.1	kg	0.082772	m ³
30	4LSteel	200	kg	0.025013	m³
30	4LSteel	26.3391	kg	0.003292	m ³
30	4LSteel	10.5356	kg	0.001316	m ³
al	SS304LStee I	236.982	Kg	0.0296227	m ³

G)

To

PT

PT

PT

PT

PT

To

SS

SS

SS

Tot

EXTRINSIC CONTAMINATION FROM MATERIALS

XENON1T: arXiv:1705.01828v1

Energy spectrum in 1 t FV of the total ER background from the detector materials (black), and the separate contributions from the various components (colors).

SIMULATIONS STATUS

• CURRENTLY RUNNING SIMULATIONS FOR GAMMA BACKGROUND FOR DIFFERENT MATERIALS IN THE TPC (PTFE, COPPER, STAINLESS STEEL)

• NEXT STEPS: NEUTRONS FROM MATERIALS

CHALLENGES FOR THE FUTURE

- LIMIT THE CONTRIBUTION OF BACKGROUND EVENTS FOR THE LARGEST DARK MATTER DETECTOR IN THE WORLD
- OPTIMISE THE DETECTOR NOT ONLY FOR DARK MATTER SEARCHES, BUT ALSO SOLAR NEUTRINOS, ONBB DECAYS...-> SEE PATRICIA SANCHEZ TALK
- OBTAIN GOOD SENSITIVITIES BOTH FOR WIMP NUCLEAR RECOIL AND NEUTRINO LESS DOUBLE BETA DECAY IN XENON

THANKS !