

UNIVERSITÉ DE GENÈVE

FACULTÉ DES SCIENCES Section de physique

FIT: The Fiber Tracker for the HERD Facility

P. Azzarello, F. Cadoux, D. La Marra, <u>C. Perrina</u>, J. Wang, X. Wu <u>chiara.perrina@unige.ch</u>

The High Energy cosmic-Radiation Detection (HERD) Facility

- Proposed as a space astronomy payload onboard the future China's Space Station (CSS).
- Planned to be operational from 2025 for more than 10 years.

HERD: the objectives

and the second s

sr⁻¹)

E_k^{2.6}Flux (GeV^{1.6} m² s⁻¹ 01 6

 10^1 10^2 10^3 10^4

AMS-02 CREAM

ATIC-2

HERD-5vrs

 $10^5 10^6 10^7$

Search for signatures of annihilation/decay products of **dark matter** in

- energy spectrum and anisotropy of high energy electrons (10 GeV – 100 TeV)
- γ-rays (500 MeV 100 TeV)

Measurements of **energy spectrum and composition** of primary cosmic rays from 30 GeV to PeV.

Ek (GeV)

Wide FOV monitoring of gamma-rays from 500 MeV to study gamma-ray bursts, active galactic nuclei and galactic microquasars.

Energy range (e/γ)	10 GeV – 100 TeV
γ low energy range	500 MeV – 30 GeV
Energy range (nuclei)	30 GeV – 3 PeV
Angular resolution (e/γ)	0.1° @10 GeV
Charge resolution (nuclei)	10% – 15% for Z = 1 – 26
Energy resolution (e/γ)	< 1% @200 GeV
Energy resolution (p)	20% @100 GeV - PeV
e/p separation power	>10 ⁻⁶
Geometric factor (e)	>3 m ² sr @200 GeV
Geometric factor (p)	>2 m ² sr @100 GeV

HERD: the detector

The Fiber Tracker (FIT)

- 4 identical sectors
- 5 (x-y) planes in each sector
 - 4 (x-y) with single readout to measure particles with Z = 1
 - 1 (x-y) with double readout to measure also nuclei with 1 < Z ≤ 20
- 7 modules (~ 1 m fiber length) in each x plane
- 10 modules (~ 70 cm fiber length) in each y plane
- 1 fiber mat + 3 (6) SiPM arrays for single (double) readout in each module

Overall mass: ~ 250 kg; Overall dimensions: ~ 1.4 x 1.4 x 0.9 m³; Overall consuption: ~ 180 W.

> 1 module = 1 fiber mat + 3/6 SiPM arrays

1 plane = 7 (x) or 10 (y) modules

FIT = 4 sectors

1 sector = 5 (x-y)

planes

FIT module: the fiber mat

- Two possible lengths: 1.06 m and 77 cm
- LHCb fiber tracker upgrade
- Titanium dioxide coating (white paint) to avoid cross-talk between fibers
- 6 layers of fibers in each mat
- Fibers KURARAY SCSF-78MJ
 - o round section
 - \circ diameter 250 μ m
 - Peak emission wavelength: 450 nm
- Mat width ≅ 97.80 mm to match 3 SiPM arrays → a layer contains ~ 350 fibers

FIT module: the Silicon Photomultiplier (SiPM) Array

SiPM arrays from Hamamatsu (type S133552-HRQ) (LHCb fiber tracker upgrade)

- 2 chips/array
- 64 channels/chip
- 4 x 26 pixels/channel
- Pixel size: 57.5 μm × 62.5 μm
- Channel size: 230 μ m × 1625 μ m
- Gap between channels: 20 μm
- Gap between chips: (220 \pm 50) μm
- 105 µm epoxy resin on top

- @ 25 °C:
- O V_{breakdown} = 48 V 58 V
- \circ V_{op} = V_{breakdown} + 3.5 V
- \circ Rq = 330 k Ω 610 k Ω
- \circ Gain @V_{op} = 3 x 10⁶
- Photon detection efficiency $@V_{op} = 45 \%$
- Sum of cross-talk + after-pulse
 prob. @V_{OP} = 8 %
- \circ Temperature coefficient:

 $dV_{breakdown}/dT = 54 \text{ mV} / ^{\circ}\text{C}$

Front-end board: 6 VATAs 64ch HDR 16, to readout 3 SiPM arrays.

Beam test setup @CERN SPS North Area

The Fiber Module prototype

2 VATA boards (VATA 64 HDR 16) designed by UNIGE (R&D HERD)

Rigid flex PCB (4 cables), designed by UNIGE (Mu3e) One SiPM array (2 x 64-channel chips), Hamamatsu (LHCb fiber tracker upgrade) Fiber mat, 1 m lenght << EPFL (LHCb fiber tracker upgrade)

Channel charge calibration

 The ADC distribution has been analyzed to identify the position of the different photoelectron (p.e.) peaks.

 $(1 \text{ p.e.} \equiv 1 \text{ pixel})$

 The peak position has been plotted as a function of the number of photoelectrons.

A linear fit has been performed on the two gain regions, to determine the conversion from ADC value to the corresponding number of photoelectrons.

Signal identification

- Once the channel calibration is done, for each event, the ADC signals have been converted in units of photoelectrons.
- A **cluster finding algorithm** has been applied, and the cluster properties integral, center of gravity (c.o.g.), size, ... have been computed:

- The c.o.g. is calculated as the average of the cluster channels weighted by their signal. It is the best estimate for the crossing point of the particle.
- > The cluster size is the number of channels composing the cluster.

Light yield

Signals up to 40 p.e. very well distinguishable.

Spatial resolution

- 100 GeV pions
- Cluster residual: 63.2 μm
- Spatial resolution: 59.6 µm (corrected for beam telescope resolution)
- Efficiency = (99.7 ± 0.2)%

• The resolution is best for a cluster width of 2 channels.

Space qualification process

This kind of detector (scintillating fibers + SiPMs) has never been used in Space.

- Space qualification tests needed:
 - Thermal cycling;
 - Thermal vacuum tests;
 - Vibrations and shocks.

Purpose of thermal cycling and thermal vacuum tests:

demonstrate that the system is able to survive the thermal and vacuum conditions experienced in the space environment, without loss of integrity or functionality.

Purpose of vibration tests:

demonstrate that the primary structure and all electronic and mechanical components can withstand the vibrations and the loads experienced during launch and deployment.

Thermal vacuum test of a fiber module prototype @UNIGE clean room.

Summary and outlook

- During the last two years, FIT has been becoming a reality.
 - ✓ Advanced mechanichal and electronics project.
 - ✓ Two prototypes of fiber module realized and tested during 5 beam tests.
- In May 2018 the HERD FIT Phase-B (prototype level) has been approved by the Swiss Space Office and is now funded by PRODEX.
 - Ten more prototypes will be assembled before the end of the year.
 - A prototype front-end electronics board with three SiPM arrays is in production, and will be tested at 2 beam tests at CERN.
 - A DAQ board to readout multiple fiber modules is under design, and will be produced in 2019.
 - The first space qualification tests of the FIT module and readout electronics will start in September, and will be regularly done until the end of 2019.
 - ➤ A simulation model of the FIT is under developement, the first results of the single mat simulation are very promising (→ Poster 388 presented by Junjing Wang).

Ideas to Realit

Thank you!!

A huge thanks to the LHCb colleagues of EPFL and the Mu3e group of UNIGE.

SPS Annual Meeting 2018

Backup

Why a fiber tracker?

- The spatial resolution is similar to the one of silicon strip detectors.
- Simpler to build long detector (of e.g. 1 m).
- Front End Electronics can be placed on one side of the detector module, even if it is long.
- Simpler to place the FEE outside of the support tray.
- Reduced dead area (no gap between sensors, no dead area on the silicon detector, FEE placed outside of support tray).
- No wire bonds on the detectors, thus the distance between support trays can be smaller than for silicon detectors.
- Lighter trays.
- Still the design needs to go through the space qualification process.

Channel pedestals and gains

The **intercept** of the fitting line from 2 to 12 photoelectrons corresponds to the channel **pedestals** and the **slope** to the channel **gains**.

Monte Carlo simulation data vs. test beam data

Light yield

SIPHRA: Silicon Photomultiplier Readout ASIC

- New ASIC from IDEAS for space applications
- Prototype chip commissioned by ESA and the University of Geneva.
- 16 negative current and 16 positive current inputs
 - Negative inputs can handle large current (-16/-8/-4/-0.4 nC)
 - Positive inputs have 3 programmable individual gains (+40/+4/+0.4 pC)
- 12-bits ADC included.
- Programmable shaping time: 200, 400, 800, 1600 ns
- Programmable hold timing: 68 ns 4.7 μs
- One line to readout and digitize a PT100 temperature sensor.
- One single power supply voltage: **3.3 V**.
- It can provide in output only the channels with a signal higher than a programmed threshold (one for each channel) → Data reduction at ASIC level!
- 16 mW power consumption, *i.e.* 1 mW per channel.

SIPHRA results

and the state of the second states

