Search for neutrinoless double beta decay beyond $10^{26}\,\text{yr}$ half life sensitivity with GERDA

Rizalina Mingazheva 30th August 2018

の20 비로 イヨト (ヨト (唱) (日)

Rizalina Mingazheva (University of Zurich) Search for neutrinoless double beta decay with GERDA

Aims of $0\nu\beta\beta$ decay search

Some open question in neutrino physics:

- What is the mass of $\nu_{lightest}$?
- What is the neutrino mass hierarchy?
- Are neutrinos Dirac or Majorana particles?
- Is lepton number violated in nature?

0
uetaeta -decay

- A(Z, N) \rightarrow A(Z+2, N) + 2e⁻
- Hypothetical non-SM process, $\Delta L{=}2$
- The signature: peak at the end-point of electrons energy spectra, at $Q_{\beta\beta}$

크니님

Search for the $0\nu\beta\beta$ decay

The observation is possible for O(10) nuclei

• For expected background rate, BI:

$$T_{1/2}^{0\nu} \propto \epsilon \sqrt{\frac{Mt}{BI \cdot \Delta E}}$$

• Background-free case:

 $T_{1/2}^{0\nu} \propto \epsilon \cdot Mt$

Mt - exposure BI - backgr. index ϵ - detection efficiency

⁷⁶Ge detectors

- High intrinsic purity
- Best energy resolution (3-4 keV FWHM at $Q_{\beta\beta}$ (\approx 2039 keV))
- 88% enrichment of $^{76}{
 m Ge}$

Rizalina Mingazheva (University of Zurich)

Search for neutrinoless double beta decay with GERDA

GERDA data taking

- Phase I finished in 2013 [Phys. Rev. Lett. 111, 122503]
- Phase II since Dec. 2015:
 - Nature 544, 47–52
 - Phys. Rev. Lett. 120, 132503
 - Neutrino2018 focus of this talk
- Total collected exposure: 82.4 kg·yr

The GERDA experiment

- Located at the LNGS underground laboratory
 - 3.5 km w.e. of rock

- 1 Water tank, muon veto
- 2 Clean room
- 3 Plastic muon veto system

The GERDA experiment

- Located at the LNGS underground laboratory
 - 3.5 km w.e. of rock

- 1 Water tank, muon veto
- 2 Clean room
- 3 Plastic muon veto system
- 4 Liquid Argon (LAr) veto system

- Located at the LNGS underground laboratory
 - 3.5 km w.e. of rock

- 1 Water tank, muon veto
- 2 Clean room
- 3 Plastic muon veto system
- 4 Liquid Argon (LAr) veto system
- 5 Detector array

Search for neutrinoless double beta decay with GERDA

- Located at the LNGS underground laboratory
 - 3.5 km w.e. of rock

- 1 Water tank, muon veto
- Clean room
- 3 Plastic muon veto system
- 4 Liquid Argon (LAr) veto system
- 5 Detector array
- 6 Detector module

리는

b 4 ± b

Germanium detectors in GERDA

- In GERDA: Semi-Coaxial, broad energy germanium (BEGe) detectors
- Signal readout from p⁺ contact: charge collection due to electric potential created by depletion voltage

[Eur.Phys.J. C 78 (2018) 388] [Eur. Phys. J. C 73 (2013) 2583]

Search for neutrinoless double beta decay with GERDA

Background rejection

In coincidence with Ge-detectors, Muon and LAr veto

Only events with the energy deposition in a single detector remain $\Box \rightarrow \Box = \Box = \Box$

Rizalina Mingazheva (University of Zurich) Search for neutrinoless double beta decay with GERDA

315

Pulse Shape Discrimination

There are still γ with energy deposition in multiple location or α on the surface

Pulse Shape Discrimination (PSD) [Eur. Phys. J. C 73 (2013) 2583]

- Charge \sim energy of the event
- Pulse shape depends on event topology

30th August 2018

Energy calibration

Coax

BEGe

61 keV

1000

63 keV

727 keV 785 keV 893 keV 079 keV 593 keV

DEP)

1621 keV

513 keV

1500

counts / keV

10⁸

10⁷

10⁶ 10⁵

10⁴

 10^{3}

10²

500

- Determine energy scale and resolution
- Weekly exposure to ²²⁸Th sources: O(100) calibrations for the Phase II
- Monitor detectors stability with gamma line from ²⁰⁸TI decay at 2.6 MeV

Rizalina Mingazheva (University of Zurich) Search for neutrinoless double beta decay with GERDA

2500

2104 keV (SEP)

TI-208

Bi-212

2000

GERDA Phase II spectra

• Blind analysis in $Q_{\beta\beta} \pm 25 \text{ keV}$

30th August 2018 9 / 12

-

GERDA Phase II spectra

- Blind analysis in $Q_{\beta\beta}\pm 25$ keV
- After LAr veto

Rizalina Mingazheva (University of Zurich) Search for neutrinoless double beta decay with GERDA

30th August 2018 9 / 12

크니님

▶ < ∃ ▶</p>

-

< A

GERDA Phase II spectra

- Blind analysis in $Q_{\beta\beta} \pm 25 \text{ keV}$
- After LAr veto
- After PSD cut

Rizalina Mingazheva (University of Zurich) Search for neutrinoless double beta decay with GERDA

이오야 비로 세로 세로 세탁 세탁

Energy spectra in ROI

Region of Interests (ROI): $Q_{\beta\beta}\pm 25$ keV BI is estimated from 1930-2190 keV

- Enriched BEGe:
 - BI: $5.6^{+3.4}_{-2.6} \cdot 10^{-4} \text{ cts/kg·yr}$
- Enriched Coaxial:
 - BI: $5.7^{+4.1}_{-2.6} \cdot 10^{-4} \text{ cts/kg·yr}$

Half life sensitivity does not depend on the BI \longrightarrow ${\rm GERDA}$ is effectively "background free" experiment

30th August 2018 10 / 12

크니님

Unblinding of ROI

Few events in the opened box

Unbinned maximum likelihood fit:

- Best fit value for zero $0\nu\beta\beta$ events
- $\label{eq:constraint} \begin{array}{l} \bullet \ \mbox{Frequentist:} \\ T_{1/2}^{0\nu} > 0.9 \cdot 10^{26} \ \mbox{yr.} \ (90\% \ \mbox{C.L.}) \\ \mbox{Median sensitivity:} \\ 1.1 \cdot 10^{26} \ \mbox{yr.} \ (90\% \ \mbox{C.L.})! \end{array}$

LEGEND is coming

- $\bullet\,$ Joint effort from GERDA and Majorana collaborations
- Combine the best of the developed techniques
- LEGEND-200:
 - 200 kg of active mass
 - New type of the detectors are currently being tested
 - Location at LNGS
 - Existing GERDA infrastructure
 - BG goal: $0.6 \cdot 10^{-3} \text{ cts/(FWHM \cdot kg \cdot yr)}$
 - Will start in 2021
- LEGEND-1000:
 - Location TBD
 - Existing GERDA infrastructure
 - BG goal: $0.1 \cdot 10^{-3} \text{ cts/(FWHM \cdot kg \cdot yr)}$
 - The start is connected to funding

GERDA infrastructure

LEGEND-100 cryostat

3 5

Conclusion and outlook

Conclusion and outlook

Rizalina Mingazheva (University of Zurich) S

Search for neutrinoless double beta decay with GERDA

30th August 2018 13 / 12

Rizalina Mingazheva (University of Zurich)

Search for neutrinoless double beta decay with GERDA

Bonus slides

シック・目目 (日本)(日本)(日本)(日本)(日本)

Rizalina Mingazheva (University of Zurich) Search for neutrinoless double beta decay with GERDA

30th August 2018 1/5

GERDA data taking

- Phase I finished in 2013 [Phys. Rev. Lett. 111, 122503]
- Phase II since Dec. 2015:
 - Nature 544, 47–52
 - Phys. Rev. Lett. 120, 132503
 - Neutrino2018 (by A. Zsigmond) in the focus of this talk
- Total collected exposure: 82.4 kg·yr

On the mbb and NME

Rizalina Mingazheva (University of Zurich) Search for neutrinoless double beta decay with GERDA

30th August 2018 3 / 5

On the mbb and NME

ロ > ・ d = > ・ e = > ・ e = ・ の < @

Effective Majorana mass

30th August 2018

비로 서로 논서로 논식되는 소리는

5/5