Search for neutrinoless double beta decay beyond 10^{26} yr half life sensitivity with GERDA

Rizalina Mingazheva
30th August 2018
Aims of $0\nu\beta\beta$ decay search

Some open question in neutrino physics:

- What is the mass of ν_{lightest}?
- What is the neutrino mass hierarchy?
- Are neutrinos Dirac or Majorana particles?
- Is lepton number violated in nature?

$0\nu\beta\beta$ -decay

- $A(Z, N) \to A(Z+2, N) + 2e^-$
- Hypothetical non-SM process, $\Delta L=2$
- The signature: peak at the end-point of electrons energy spectra, at $Q_{\beta\beta}$
Search for the $0
\nu\beta\beta$ decay

The observation is possible for $O(10)$ nuclei

• For expected background rate, BI:

$$T_{1/2}^{0\nu} \propto \epsilon \sqrt{\frac{Mt}{BI \cdot \Delta E}}$$

• Background-free case:

$$T_{1/2}^{0\nu} \propto \epsilon \cdot Mt$$

Mt - exposure
BI - backgr. index ϵ - detection efficiency

76Ge detectors

• High intrinsic purity
• Best energy resolution (3 - 4 keV FWHM at $Q_{\beta\beta}$ (≈ 2039 keV))
• 88% enrichment of 76Ge
GERDA data taking

- Phase II since Dec. 2015:
 - Nature 544, 47–52
 - Phys. Rev. Lett. 120, 132503
 - Neutrino2018 - focus of this talk

- Total collected exposure: 82.4 kg·yr
The GERDA experiment

- Located at the LNGS underground laboratory
 - 3.5 km w.e. of rock

1. Water tank, muon veto
2. Clean room
3. Plastic muon veto system
The GERDA experiment

- Located at the LNGS underground laboratory
 - 3.5 km w.e. of rock

1. Water tank, muon veto
2. Clean room
3. Plastic muon veto system
4. Liquid Argon (LAr) veto system
The GERDA experiment

- Located at the LNGS underground laboratory
 - 3.5 km w.e. of rock

1. Water tank, muon veto
2. Clean room
3. Plastic muon veto system
4. Liquid Argon (LAr) veto system
5. Detector array

Rizalina Mingazheva (University of Zurich) Search for neutrinoless double beta decay with GERDA 30th August 2018
The GERDA experiment

- Located at the LNGS underground laboratory
 - 3.5 km w.e. of rock

1. Water tank, muon veto
2. Clean room
3. Plastic muon veto system
4. Liquid Argon (LAr) veto system
5. Detector array
6. Detector module
Germanium detectors in GERDA

- In GERDA: Semi-Coaxial, broad energy germanium (BEGe) detectors
- Signal readout from p^+ - contact: charge collection due to electric potential created by depletion voltage

Background rejection

In coincidence with Ge-detectors, Muon and LAr veto

Only events with the energy deposition in a single detector remain
Pulse Shape Discrimination

There are still γ with energy deposition in multiple location or α on the surface.

Pulse Shape Discrimination (PSD) \cite{Eur. Phys. J. C 73 (2013) 2583}
- Charge ∼ energy of the event
- Pulse shape depends on event topology

\[\begin{align*}
\text{Charge (E) [a.u.]} & \rightarrow \\
\text{Current (A) [a.u.]} & \rightarrow \\
\text{Normalised A/E} & \\
A/E & \sim 1 \\
A/E & < 1
\end{align*} \]
Energy calibration

- Determine energy scale and resolution
- Weekly exposure to 228Th sources: $O(100)$ calibrations for the Phase II
- Monitor detectors stability with gamma line from 208Tl decay at 2.6 MeV

Resolution at $Q_{\beta\beta}$:
- Coaxial: FWHM = 3.6 ± 0.1 keV
- BEGe: FWHM = 3.0 ± 0.1 keV
GERDA Phase II spectra

- Blind analysis in $Q_{\beta\beta} \pm 25$ keV
GERDA Phase II spectra

- Blind analysis in $Q_{\beta\beta} \pm 25$ keV
- After LAr veto
GERDA Phase II spectra

- Blind analysis in $Q_{\beta\beta} \pm 25$ keV
- After LAr veto
- After PSD cut
Energy spectra in ROI

Region of Interests (ROI): $Q_{\beta\beta} \pm 25$ keV

BI is estimated from 1930 - 2190 keV

- Enriched BEGe:
 - BI: $5.6^{+3.4}_{-2.6} \cdot 10^{-4}$ cts/kg·yr

- Enriched Coaxial:
 - BI: $5.7^{+4.1}_{-2.6} \cdot 10^{-4}$ cts/kg·yr

Half life sensitivity does not depend on the BI \rightarrow

GERDA is effectively "background free" experiment
Unblinding of ROI

Few events in the opened box

Unbinned maximum likelihood fit:
• Best fit value for zero $0\nu\beta\beta$ events
• Frequentist: $T_{1/2}^{0\nu} > 0.9 \cdot 10^{26}$ yr. (90% C.L.)
Median sensitivity: $1.1 \cdot 10^{26}$ yr. (90% C.L.)!
LEGEND is coming

- Joint effort from GERDA and Majorana collaborations
- Combine the best of the developed techniques
- **LEGEND-200:**
 - 200 kg of active mass
 - New type of the detectors are currently being tested
 - Location at LNGS
 - Existing GERDA infrastructure
 - BG goal: $0.6 \cdot 10^{-3}$ cts/(FWHM·kg·yr)
 - Will start in 2021
- **LEGEND-1000:**
 - Location TBD
 - Existing GERDA infrastructure
 - BG goal: $0.1 \cdot 10^{-3}$ cts/(FWHM·kg·yr)
 - The start is connected to funding
Conclusion and outlook

GERDA:
- Dec. 2015: PhaseII
- "Background free"
- Excellent FWHM: 2‰ at $Q_{\beta\beta}$

In the near future:
- LEGEND-200: almost fully funded
 - will reach sensitivity of 10^{-29}
 - start in 2021
- LEGEND-1000: the goal is to reach
 - sensitivity of 10^{-27}

Excellent FWHM: 2‰ at $Q_{\beta\beta}$
Conclusion and outlook

GERDA:
- Dec. 2015: PhaseII
- "Background free"
- Excellent FWHM: 2% at $Q_{\beta\beta}$

In the near future:
- LEGEND-200: almost fully funded will reach sensitivity of 10^{27} yr start in 2021
- LEGEND-1000: the goal is to reach sensitivity of 10^{28} yr

GERDA 18-03

Search for neutrinoless double beta decay with GERDA

Rizalina Mingazheva (University of Zurich)
Search for neutrinoless double beta decay with GERDA
30th August 2018
Thank you!
Bonus slides
GERDA data taking

- Phase II since Dec. 2015:
 - Nature 544, 47–52
 - Phys. Rev. Lett. 120, 132503
 - Neutrino2018 (by A. Zsigmond) - in the focus of this talk
- Total collected exposure: 82.4 kg·yr

<table>
<thead>
<tr>
<th>Date</th>
<th>Expos. Gain (kg·yr^-1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>dd/mm/yy</td>
<td></td>
</tr>
<tr>
<td>01/01/16</td>
<td>0.02</td>
</tr>
<tr>
<td>01/04/16</td>
<td>0.04</td>
</tr>
<tr>
<td>01/07/16</td>
<td>0.06</td>
</tr>
<tr>
<td>01/10/16</td>
<td>0.08</td>
</tr>
<tr>
<td>31/12/16</td>
<td>0.08</td>
</tr>
<tr>
<td>01/04/17</td>
<td>0.08</td>
</tr>
<tr>
<td>02/07/17</td>
<td>0.08</td>
</tr>
<tr>
<td>01/10/17</td>
<td>0.08</td>
</tr>
<tr>
<td>31/12/17</td>
<td>0.08</td>
</tr>
<tr>
<td>01/04/18</td>
<td>0.08</td>
</tr>
</tbody>
</table>

Rizalina Mingazheva (University of Zurich)
Search for neutrinoless double beta decay with GERDA
30th August 2018
On the mbb and NME
On the mbb and NME

![Graph showing sensitivity versus exposure](image)

- $T_{1/2}^{\nu}$ vs. exposure (90% C.L.)
- BI = 0 cts/(keV kg year)
- BI = 10^{-3} cts/(keV kg year)
- BI = 10^{-2} cts/(keV kg year)
- BI = 10^{-1} cts/(keV kg year)

Rizalina Mingazheva (University of Zurich)
Search for neutrinoless double beta decay with GERDA
30th August 2018
Effective Majorana mass

Search for neutrinoless double beta decay with GERDA

Rizalina Mingazheva (University of Zurich)