The SST-1M camera prototype performances and calibration for the CTA SST-1M Project

SPS annual meeting, EPFL, 30.08.2018

C. Alispach for the CTA SST-1M Project
The CTA context

- CTA is the new generation ground-based very high energy gamma-ray instrument
- 3 sizes of telescopes to cover 4 orders of magnitude in energy
- 2 sites (Northern and Southern sky)

Small Sized Telescopes

SST (S: 70, N: 0) | MST (S: 25, N: 15) | LST (S: 4, N: 4)

~4 m | ~23 m | ~12 m
Overview of the SST-1M telescope

# Mirrors	18
Pixels | 1296
Field of View | 9.1°
Focal length | 5.6 m
Pixel angular size | 0.24°
Pixel linear size | 23.2 mm
Mirror area | 9.42 m²
Mirror effective area | 6.47 m²
D80 | 11.3 mm / 0.12°
D80 requirement | 23 mm / 0.24°
The Photo Detection Plane (PDP)

- 1296 pixels (SiPM + Light guides) developed @ UniGE
- Aluminum Back Plate with water cooling
- Automatic bias voltage compensation for T variation through Slow Control
- Borofloat entrance window coated with AR filter + Cut-off Filter (540 nm)
Triggering and readout system
(DigiCam)

- Continuous sampling at 250 MHz with FADC
- PDP DC coupled to DigiCam
 - Baseline shift to measure Night Sky Background (NSB)
- Digital pixel sum for the trigger
 - Highly flexible trigger implementation in FPGA

Trigger condition:
Digital cluster signal > Threshold
Camera Test Setup (CTS)

- **Camera Test Setup (CTS):**
 - Full coverage of the camera (1 pulsed + continuous LED per pixel)
 - Light tight mechanical support to allow on-site calibration
 - Fully controllable by telescope software
 - Automatized calibration data taking
- **Usage**
 - Cable mapping, dead pixels, shower injection, pixel characterization
 - Extraction of SiPM parameters: Dark count rate, Optical crosstalk, Electronic noise, Gain, etc.
- **Systematic uncertainties assessed with MC**
Gain measurements with pulsed light

- Illumination under **multiple pulsed light** level (CTS or Flasher)
- **Multi-Gaussian** fit to extract gain
 \[f(x) = \sum_{n=0}^{k} \frac{1}{\sqrt{2\pi}\sigma_n} \exp \left(- \left(\frac{x - (nG + B)}{\sqrt{2}\sigma_n} \right)^2 \right) \]
 \[\sigma_n^2 = \sigma_e^2 + n\sigma_s^2 \]
- **Gain equalization** via FADC gain adjustment (+/- 5%)
 - 7% → 1.6% spread (without outliers)

Gain spread ↔ **Trigger** uniformity
Charge and time resolution

- **Charge** resolution ↔ **Energy** resolution
- ~ 12% at 100 p.e.
- To be assessed for all pixel with CTS
 → Below CTA requirements

- ~ 200 ps time resolution @ 100 p.e.
- To be done as function of NSB level
Trigger rate

- Dead time free:
 - Readout window 200 ns
 - Maximum trigger rate 5 MHz
- Maximum readout rate ~3.5 kHz
- CTA required event rate
- Cosmic interacting with SiPMs:
 - Camera horizontal
 - Camera vertical

→ No event dropped @ CTA required rate
Monte Carlo Camera validation

• Simulation of camera response at different NSB conditions
• 2 independent Monte Carlo simulations (CARE + ToyMC)
• Low level distribution in good agreement (PDP MC validated)
• High level distribution (trigger rate) to validate
 – Pixel level simulations
Expected performances (Monte Carlo)

- Simulation with CORSIKA+GrOptics+CARE 500Hz trigger rate simulated
- **Energy threshold**: 0.3 TeV (in dark night conditions)
- Further improvements possible by developing new trigger logic (flexible implementation with Digital Trigger)
First observations of the Crab Nebula

- First light on 30th of August 2017
- Observations at IFJ Krakow
 - not ideal > 1 GHz NSB / pixel
 - Rarely clear sky
- 1h20 of observation of the Crab (Standard candle in gamma-ray astronomy)
 - Event excess of atmospheric air showers pointing towards optical center of camera (4.2 sigma)
- Currently (July-August) observing gamma ray sources:
 - 1ES 1959+650
 - 1ES 2344+51.4
 - Mrk 501
 - IC 310
 - None detected yet
 - Low flux compared to Crab
 - High NSB
→ Crab observations starting in September
Conclusions and Outlooks

• First observations with the SST-1M telescope confirmed its capabilities for gamma-ray astronomy.
• Automated calibration for production phase ready
• Performance reach CTA goals and give margin for further development (dedicated trigger algorithm, higher rate, etc.)
• 2nd observation campaign ongoing with full system automatized
 – From data taking to data processing
 – Looking for a better site for prototyping phase