

First steps towards the experimental observation of purely baryonic decay processes

<u>Vladimír Macko¹</u> (LHCb Collaboration)

¹EPFL, Lausanne SPS/CHIPP Annual meeting Lausanne 2018

29 August 2018

Purely baryonic decays of baryons

- Decays of baryons into final states containing only baryons
- Predicted by the Standard Model^{1,2}, examples:

- Yet, none of these modes has ever been experimentally observed
- They constitute an unexplored class of decays...
- Measurements of purely baryonic decays represent valuable tests of theoretical predictions and can validate the factorization approach used.

¹Purely baryonic decay processes by C. Q. Geng, Y.K. Hsiao, E. Rodrigues [1806.00861]

²Exploring the simplest purely baryonic decay processes by C. Q. Geng, Y.K. Hsiao, E. Rodrigues [1603.05602]

Objectives

Study purely baryonic decays in modes:

 $\begin{array}{c} \blacktriangleright \quad \Lambda_b^0 \to \Lambda p \bar{p} \\ \blacktriangleright \quad \Xi_b^0 \to \Lambda p \bar{p} \end{array}$ р u $\bar{\mathbf{n}}$ $\Lambda_{\rm b}$ Λ $\Lambda_{
m b}$ uU (a)(b)Wm Λ_b ^u р Λ_b ^u à (c)(d)

Λ

 $\bar{\mathbf{p}}$

p

Objectives

Study purely baryonic decays in modes:

$$\Lambda_b^0 \to \Lambda p\bar{p}$$

$$= \Xi_b^0 \to \Lambda p \bar{p}$$

Measure the branching fractions; Theoretical predictions¹:

•
$$B(\Lambda_b^0 \to \Lambda p \bar{p}) = (3.2^{+0.8}_{-0.3} \pm 0.4 \pm 0.7) \times 10^{-6}$$

B(Ξ⁰_b → Λpp̄) = (1.4 ± 0.1 ± 0.1 ± 0.4) × 10⁻⁷ (uncertainties from non-factorisable effects, CKM matrix elements, and hadronic form factors)

Depending on the successful observation and the available statistics: Carry out the first CP violation measurement for these decay modes; Theoretical prediction of direct CP violation:

•
$$\mathcal{A}_{CP}(\Lambda_b^0 \to \Lambda p \bar{p}) = (3.4 \pm 0.1 \pm 0.1 \pm 0.1)\%$$

•
$$\mathcal{A}_{CP}(\Xi_b^0 \to \Lambda p \bar{p}) = (-13.0 \pm 0.5 \pm 1.5 \pm 1.1)\%$$

¹Purely baryonic decay processes by C. Q. Geng, Y.K. Hsiao, E. Rodrigues [1806.00861]

LHCb detector

- Single-arm forward spectrometer¹
- Covers the pseudorapidity range $2 < \eta < 5$
- Designed to study particles containing b or c quarks
- Measurements of rare decays and CP violation

Tracks at LHCb

Decays $\Lambda_b^0 \to \Lambda p \bar{p}$, $\Xi_b^0 \to \Lambda p \bar{p}$ contain Λ In LHCb conditions Λ can travel up to $\sim 2 \text{ m}$

- If Λ decays in VELO \rightarrow Two Long tracks
- ▶ If Λ decays after traversing VELO \rightarrow Two Downstream tracks

Figure taken from Jeroen van Hunen, NIKHEF B-physics meeting June 4, 2004

Expected yields

According to a Run 1 study¹: $N_{\Lambda_b^0 \to \Lambda^0 p \bar{p}} = 27.5 \pm 9.6_{(stat.)} \pm 3.0_{(sys.)}$

Results for the free parameters of the simultaneous fit of the selected Run-1 data

$\begin{array}{c} N_{A_b^0 \to A^0 p \overline{p}}(11 {\rm LL}) \\ 3, 4_{-1,4}^{+1,8} \end{array}$	$\begin{array}{c} N_{A^0_b \to A^0 p \overline{p}}(12 \mathrm{LL}) \\ 9.7^{+3.4}_{-2.8} \end{array}$	$\frac{N_{\rm DD}/N_{\rm LL}(11)}{1,6^{+1,3}_{-0,7}}$	$\frac{N_{\rm DD}/N_{\rm LL}(12)}{0,9^{+0.5}_{-0.4}}$
$N_{komb.}(11LL)$ $7,9^{+4,8}_{-3,7}$	$N_{komb.}(12LL) \\ 34.6^{+10.3}_{-9.0}$	$N_{komb.}(11 \text{DD}) \\ 14,4^{+6,1}_{-5,2}$	$N_{komb.}(12 \text{DD})$ $38,8^{+8,8}_{-7,9}$

▶ With Run 2 luminosity and improvements in reconstruction, trigger and event selection, $\sim 100 \ \Lambda_b^0 \rightarrow \Lambda p \bar{p}$ signal events are expected.

¹R. Zillmer, Master Thesis, University of Rostock

- Trigger selection
- Event reconstruction
- Signal MC study
- Backgrounds
- Event Selection
- Hypothesis testing
- Systematic uncertainty studies

LHCb Trigger

- Level 0 (Hardware trigger): A hadron from signal detected or triggered independently of signal
- High Level Trigger 1 (Software trigger): One or two good quality tracks of interest reconstructed
- High Level Trigger 2 (Software trigger): 2-or-3-body decay of interest reconstructed

Trigger ε [%]

	2015 <i>LL</i>	2015 DD	2016 <i>LL</i>	2016 DD
$\Lambda^0_b o \Lambda p ar p$	34.07 ± 0.66	$29.22{\pm}0.31$	$37.22{\pm}0.40$	$33.05 {\pm} 0.20$

- Trigger selection
- Event reconstruction
- Signal MC study
- Backgrounds
- Event Selection
- Hypothesis testing
- Systematic uncertainty studies

► Look for events containing decay chain $\Lambda_b^0 \rightarrow \Lambda h \bar{h}$ $\hookrightarrow \Lambda \rightarrow p \pi^$ with constraints on the decay product properties (p_T ,

angles,...)

 Apply proton mass (h = p) hypothesis and refit with constraints on m_Λ and decay topology

- Trigger selection
- Event reconstruction
- Signal MC study
- Backgrounds
- Event Selection
- Hypothesis testing
- Systematic uncertainty studies

Signal regions:

- Trigger selection
- Event reconstruction
- Signal MC study
- Backgrounds
- Event Selection
- Hypothesis testing
- Systematic uncertainty studies

Blind regions:

 $m_{\Lambda_{h}^{0}} = 5619.60 \pm 0.17 \text{ MeV}$

Λ⁰_b: [5569,5669] MeV

$$m_{\Xi_b^0} = 5794.5 \pm 1.4 \text{ MeV}$$

•
$$\Xi_b^0$$
: [5738,5838] MeV

- Trigger selection
- Event reconstruction
- Signal MC study
- Backgrounds
- Event Selection
- Hypothesis testing
- Systematic uncertainty studies

Backgrounds considered (1/2):

- Combinatorial
- ► Cross-feed: a double meson misidentification in $\Lambda_b^0 \rightarrow \Lambda h h'$

► $h \in \{K, \pi\}$

- K⁰_s cross-feeds: proton-pion misidentification:
 - $\begin{array}{l} \blacktriangleright \quad B^0_{(s)} \to K^0_s h h' \\ \blacktriangleright \quad B^0_{(s)} \to K^0_s p \bar{p} \\ \blacktriangleright \quad \Lambda^0_b \to K^0_s p h \end{array}$
- other (Relevant for LL tracks, unlike modes above):
 - $B^0 \rightarrow p\bar{p}hh' \ [B^0 \rightarrow p\bar{p}K\pi]$

- Trigger selection
- Event reconstruction
- Signal MC study
- Backgrounds
- Event Selection
- Hypothesis testing
- Systematic uncertainty studies

Backgrounds considered (2/2):

- Partially reconstructed (not observed)

 → toy simulation:
 - $\begin{array}{c} \blacktriangleright \quad \Lambda_b^0 \to \Lambda p \bar{p} \pi^0 \\ \hline \equiv_b^0 \to \Lambda p \bar{p} \pi^0 \end{array}$
- Modes like $\Lambda_b^0 \to \Sigma^0 p\bar{p}$ (not observed) with a decay $\Sigma^0 \to \Lambda \gamma$ where the γ is not reconstructed: $\Delta m_{rec} \to -(76.959 + 0.023) \text{MeV}$

$$\Delta m_{(\Sigma^0 - \Lambda)} = (76.959 \pm 0.023)$$
M
and $\mathcal{B}_{\Sigma^0 \rightarrow \Lambda \gamma} = 100\%$

- Trigger selection
- Event reconstruction
- Signal MC study
- Backgrounds
- Event Selection
- Hypothesis testing
- Systematic uncertainty studies

Selection optimization

 Multivariate approach utilizing machine learning tools to optimize signal event selection

Examples of input variables for optimization:

- ► Λ_b^0 transverse momentum
- \blacktriangleright Λ_b^0 pseudorapidity
- Λ_b^0 IP significance w.r.t PV
- Λ_b^0 pointing angle
- Daughter Λ displacement

Summary

- Purely baryonic decays of baryons are predicted by SM yet not observed, therefore constitute an unexplored class of decays
- Measurements of purely baryonic decays will test theoretical predictions and validate theoretical assumptions
- ► Selected signal channels $\Lambda_b^0 \to \Lambda p \bar{p}$, $\Xi_b^0 \to \Lambda p \bar{p}$ and associated backgrounds are analyzed
- Study aims at first observation of purely baryonic decays, branching fraction measurement and if the signal yield allows, CP violation will be studied