Greetings from New Physics from flavor-changing processes

Gino Isidori
[University of Zürich]

- Introduction [Open problems, common lore, recent hopes]
- Bottom-up approaches to describe the anomalies
- Speculations on UV completions
- Possible future implications
- Conclusions
Introduction

All microscopic phenomena seems to be well described by a remarkably simple Theory (that we continue to call “model” only for historical reasons...):

\[\mathcal{L}_{\text{Standard Model}} = \mathcal{L}_{\text{gauge}} (\psi_i, A_a) + \mathcal{L}_{\text{Higgs}} (H, A_a, \psi_i) \]
Introduction

All microscopic phenomena seems to be well described by a remarkably simple Theory (that we continue to call “model” only for historical reasons...):

$$\mathcal{L}_{\text{Standard Model}} = \mathcal{L}_{\text{gauge}} (\psi_i, A_a) + \mathcal{L}_{\text{Higgs}} (H, A_a, \psi_i)$$
Introduction

However, despite all its phenomenological successes, this Theory has some deep unsolved problems:

\[\text{due to...} \]

- Electroweak hierarchy problem \[\rightarrow \text{Instability of the Higgs mass term}\]
- Flavor puzzle
- Neutrino masses \[\rightarrow \text{Ad hoc tuning in the model parameters}\]
- U(1) charges
- Dark-matter
- Dark-energy \[\rightarrow \text{Cosmological implementation of the SM}\]
- Inflation
- Quantum gravity \[\rightarrow \text{General problem of any QFTs}\]
Introduction

However, despite all its phenomenological successes, this Theory has some deep unsolved problems:

Electroweak hierarchy problem

Flavor puzzle
Neutrino masses
U(1) charges

Dark-matter
Dark-energy
Inflation

Quantum gravity

The Standard Model (SM) should be regarded as an effective theory, i.e. the limit –in the accessible range of energies and effective couplings– of a more fundamental theory, with new degrees of freedom
However, despite all its phenomenological successes, this Theory has some deep unsolved problems:

- **Electroweak hierarchy problem** → **Instability of the Higgs mass term** → **New dynamics close to the Fermi scale** (~ 1 TeV)
- **Flavor puzzle** → **Ad hoc tuning in the model parameters**
- **Neutrino masses**
- **U(1) charges**
- **Dark-matter** → **Cosmological implementation of the SM**
- **Dark-energy**
- **Inflation**
- **Quantum gravity** → **General problem of any QFTs**

No well-defined energy scale
Introduction

However, despite all its phenomenological successes, this Theory has some deep unsolved problems:

- **Electroweak hierarchy problem**

 → Instability of the Higgs mass term

 → New dynamics close to the Fermi scale (~ 1 TeV)

- Flavor puzzle
- Neutrino masses
- U(1) charges
- Dark-matter
- Dark-energy
- Inflation
- Quantum gravity

“Common lore” (I):

\[
\mathcal{L}_{\text{SM}} = \mathcal{L}_{\text{gauge}}(A_a, \psi_i) + \mathcal{L}_{\text{Higgs}}(H, A_a, \psi_i)
\]

Understanding what stabilizes the Higgs sector (EW hierarchy problem) is the natural “main avenue” to discover New Physics
Introduction

This “main avenue” has led to very appealing BMS constructions that, however, so far do not find experimental confirmation (*making these theories less and less appealing...*) → worth to explore new directions.

- Electroweak hierarchy problem
- Flavor puzzle
 - Neutrino masses
 - U(1) charges
- Dark-matter
- Dark-energy
- Inflation
- Quantum gravity

A direction which seems to be suggested by recent low-energy data (*“flavor anomalies”* ...)

If correct... → very important implications for addressing also the other problems.
Introduction [the flavor structure of the SM]

\[\mathcal{L}_{\text{SM}} = \mathcal{L}_{\text{gauge}} (A_a, \psi_i) + \mathcal{L}_{\text{Higgs}} (H, A_a, \psi_i) \]

3 identical replica of the basic fermion family
\[[\psi = Q_L, u_R, d_R, L_L, e_R] \Rightarrow \text{huge flavor-degeneracy [U(3)^5 symmetry]} \]

\[\mathcal{L}_{\text{gauge}} = \sum_a \left(\frac{1}{4g_a^2} (F_{\mu\nu}^a)^2 + \sum_{\psi} \sum_i (D_\mu \bar{\psi}_i D^\mu \psi_i) \right) \]
Introduction \[\text{the flavor structure of the SM}\]

\[\mathcal{L}_{\text{SM}} = \mathcal{L}_{\text{gauge}}(A_a, \psi_i) + \mathcal{L}_{\text{Higgs}}(H, A_a, \psi_i)\]

3 \textit{identical replica} of the basic fermion family
\[\psi = Q_L, u_R, d_R, L_L, e_R\] ⇒ huge \textit{flavor-degeneracy} \textit{[U(3)^5 symmetry]}
Introduction [the flavor structure of the SM]

\[
\mathcal{L}_{\text{SM}} = \mathcal{L}_{\text{gauge}} (A^a, \psi_i) + \mathcal{L}_{\text{Higgs}} (H, A^a, \psi_i)
\]

3 identical replica of the basic fermion family
[\[\psi = Q_L, u_R, d_R, L_L, e_R\]] \[\Rightarrow\] huge flavor-degeneracy [U(3)^5 symmetry]

\[
\mathcal{L}_{\text{gauge}} = \sum_a -\frac{1}{4g_a^2} (F^a_{\mu\nu})^2 + \sum_i \sum \bar{\psi}_i i\gamma^\mu \psi_i
\]
Introduction [the flavor structure of the SM]

\[\mathcal{L}_{\text{SM}} = \mathcal{L}_{\text{gauge}} (A_a, \psi_i) + \mathcal{L}_{\text{Higgs}} (H, A_a, \psi_i) \]

3 identical replica of the basic fermion family
[\psi = Q_L, u_R, d_R, L_L, e_R] \Rightarrow huge flavor-degeneracy

Within the SM the flavor-degeneracy is broken only by the Yukawa interaction:

\[\bar{L}_L^i Y_L^{ik} e_R^k H + h.c. \]
\[\bar{Q}_L^i Y_D^{ik} d_R^k H + h.c. \]
\[\bar{Q}_L^i Y_U^{ik} u_R^k H_c + h.c. \]
Introduction [the flavor structure of the SM]

\[\mathcal{L}_{\text{SM}} = \mathcal{L}_{\text{gauge}} (A_a, \psi_i) + \mathcal{L}_{\text{Higgs}} (H, A_a, \psi_i) \]

3 **identical replica** of the basic fermion family
[\(\psi = Q_L, u_R, d_R, L_L, e_R \)] \(\Rightarrow \) huge **flavor-degeneracy**

Within the SM the flavor-degeneracy is broken only by the **Yukawa** interaction:

\[\bar{L}_L^i Y^i_L e_R^k H \rightarrow l_L^i M_L^{ii} l_R^i + \ldots \]
\[\bar{Q}_L^i Y^i_D d_R^k H \rightarrow d_L^i M_D^{ik} d_R^k + \ldots \]
\[\bar{Q}_L^i Y^i_U u_R^k H_c \rightarrow u_L^i M_U^{ik} u_R^k + \ldots \]
Introduction \([\text{the flavor structure of the SM}]\)

The SM flavor sector (\(=\) the Yukawa sector) contains a large number of free parameters (fermion masses & mixing angles), which do not look at all accidental...

E.g.:

\[
Y_U \sim \begin{pmatrix}
\ddots & \ddots & \ddots \\
\ddots & \ddots & \ddots \\
\ddots & \ddots & \ddots
\end{pmatrix}
\]

\[
y_t = \frac{\sqrt{2} m_t}{\langle H \rangle} \approx 1
\]

The “old” flavor puzzle...
Introduction [the flavor structure of the SM & beyond...]

"Common lore" (II):

The flavor structures are generated at some very heavy energy scale → No chance to probe their dynamical origin

This idea is supported by a series of precision measurement of rare flavor-violating processes which show no deviations from the SM:

$$\frac{1}{\Lambda^2} (\overline{\psi}_i \psi_j)^2$$
Introduction [the flavor structure of the SM & beyond...]

```
“Common lore” (II): The flavor structures are generated at some very heavy energy scale → No chance to probe their dynamical origin
```

This idea is supported by a series of precision measurement of rare flavor-violating processes which show no deviations from the SM:

Since so far (almost) everything fits well with the SM → Strong limits on NP
Introduction [the flavor structure of the SM & beyond...]

This point of view is challenged by the recent “anomalies” in B physics, i.e. the observation of a different (non-universal) behavior of different lepton species in specific semi-leptonic processes:

- $b \rightarrow c$ (charged currents): τ vs. light leptons (μ, e)
- $b \rightarrow s$ (neutral currents): μ vs. e

IF taken together... this is probably the largest “coherent” set of NP effects in present data...

The “new” flavor puzzle...

What is particularly interesting, is that these anomalies are challenging an assumption (Lepton Flavor Universality), that we gave for granted for many years (without many good theoretical reasons...)

Interesting new avenue in beyond-the-SM constructions
Introduction [a digression on LFU]

Suppose we could test matter only with long wave-length photons...

\[\gamma \xrightarrow{U(1)_Q} e^+ \quad p^+ \]

We would conclude that these two particles are "identical copies" but for their mass...
Introduction [a digression on LFU]

Suppose we could test matter only with long wave-length photons...

\[\gamma, \ g, \ W, \ Z \]
\[\text{SU}(3) \times \text{SU}(2) \times \text{U}(1) \]

We would conclude that these two particles are "identical copies" but for their mass ...

That's exactly the same (misleading) argument we use to infer LFU...

\[\gamma, \ U(1)_Q \]
\[e^+, \ p^+ \]

These three (families) of particles seems to be "identical copies" but for their mass ...

The SM quantum numbers of the three families could be an “accidental” low-energy property: the different families may well have a very different behavior at high energies, as signaled by their different mass
Introduction [a digression on LFU]

So far, the vast majority of beyond-the-SM model-building attempts

- Concentrate only on the Higgs hierarchy problem

- Postpone (ignore) the flavor problem, implicitly assuming the 3 families are “identical” copies (but for Yukawa-type interactions)

“Common lore” (I)

“Common lore” (II)

The recent flavor anomalies seem to suggest a **new avenue:**

- **We should not ignore the flavor problem** [→ new “forces” at the TeV scale distinguishing the different families]

- **A (very) different behavior of the 3 families** (with special role for 3rd gen.) may be the key to solve/understand also the electroweak hierarchy problem and **explain why we have not seen yet NP directly at colliders**
On the recent B-physics anomalies
Test of Lepton Flavor Universality in charged currents [τ vs. light leptons (μ, e)]:

\[R(X) = \frac{\Gamma(B \to X\tau\bar{\nu})}{\Gamma(B \to X\ell\bar{\nu})} \]

\(X = D \text{ or } D^* \)

- SM prediction quite solid: hadronic uncertainties cancel (to large extent) in the ratio and deviations from 1 in \(R(X) \) expected only from phase-space differences and radiative corrections
B → D(*) τν [Babar, Belle, LHCb]

Test of LFU in charged currents [τ vs. light leptons (μ, e)]:

\[
R(X) = \frac{\Gamma(B \rightarrow X\tau\bar{\nu})}{\Gamma(B \rightarrow X\ell\bar{\nu})}
\]

- **SM prediction quite solid**: hadronic uncertainties cancel (to large extent) in the ratio and deviations from 1 in \(R(X)\) expected only from phase-space differences
- Consistent results by 3 different exps. → 3.6–3.9σ excess over SM (\(D + D^*\))
Test of LFU in charged currents [τ vs. light leptons (μ, e)]:

$$R(X) = \frac{\Gamma(B \to X\tau\bar{\nu})}{\Gamma(B \to X\ell\bar{\nu})}$$

- **SM prediction quite solid**: hadronic uncertainties cancel (*to large extent*) in the ratio and deviations from 1 in $R(X)$ expected only from phase-space differences
- Consistent results by 3 different exps. $\rightarrow 3.6–3.9\sigma$ excess over SM ($D + D^*$)
- The two channels are well consistent with a **universal enhancement** (~30%) of the SM $b_L \to c_L\tau_L\nu_L$ amplitude
Anomalies in $B \to K^{(*)} \mu\mu / ee$ [LHCb]

Precise SM tests in neutral-current processes of the type $b \to s \, l^+l^-$
These transitions are Flavor Channing Neutral Current amplitudes

- No SM tree-level contribution
- Strong suppression within the SM because of CKM hierarchy
- Sizable hadronic uncertainties in the rates

- The largest anomaly is the one in the $B \to K^* \mu\mu$ angular distribution.
- Less significant correlated anomalies present also in other $b \to s \, \mu\mu$ channels: overall smallness of all $\Gamma(B \to \text{Hadron} + \mu\mu)$
- But also in this case the most interesting effects are the deviations from the SM in appropriate μ/e “clean” LFU ratios:
Anomalies in $B \to K^{(*)} \mu\mu$ / ee [LHCb]

..also in this case the most interesting effects are the deviations from the SM in appropriate μ/e “clean” LFU ratios:

$$R_H = \frac{\int d\Gamma(B \to H \mu\mu)}{\int d\Gamma(B \to H ee)}$$

$$R_K [1-6 \text{ GeV}^2] = 0.75 \pm 0.09$$

LHCb, '14

(vs. 1.00±0.01 SM)

Overall significance $\sim 3.8\sigma$ (LFU ratios only)

\to very coherent picture: all effects well described by NP of short-distance origin only in $b \to s \mu\mu$ and (& not in ee)
Bottom-up approaches to describe the anomalies
Effective Field Theory considerations

- Anomalies are seen only in semi-leptonic (quark×lepton) operators
- Data largely favor non-vanishing **left-handed** current-current operators [*Fermi-like effective theory*], although other contributions are also possible.
Effective Field Theory considerations

- Anomalies are seen only in semi-leptonic (quark×lepton) operators
- Data largely favor non-vanishing left-handed current-current operators [Fermi-like effective theory], although other contributions are also possible

\[Q_L^i \rightarrow L_L^\alpha \]
\[Q_L^j \rightarrow L_L^\beta \]

- Large coupling (competing with SM tree-level) in \(bc \rightarrow l_3 \nu_3 \)
- Small non-vanishing coupling (competing with SM FCNC) in \(bs \rightarrow l_2 l_2 \)

\[C_{ij\alpha\beta} \propto (\delta_{i3} \times \delta_{3j}) \times (\delta_{\alpha3} \times \delta_{3\beta}) \] + small terms for 2nd (\& 1st) generations

Link to pattern of the Yukawa couplings!
Effective Field Theory considerations

- Anomalies are seen only in semi-leptonic (quark×lepton) operators
- Data largely favor non-vanishing **left-handed** current-current operators [Fermi-like effective theory], although other contributions are also possible

Highly non-trivial to build a consistent EFT, given the **long list of constraints** from other rare processes, where we do not see large deviations from the SM, e.g:

+ many more...
Effective Field Theory considerations

... but if we “mimic” the flavor structure of the Yukawa couplings, is possible to pass all bounds without fine-tuning and have an excellent description of data

four main free parameters:

\[
C_{S,T} = O\left(\frac{\langle H\rangle}{\Lambda_{NP}^2}\right), \quad \lambda_{bs} = O(V_{cb}), \quad \lambda_{\mu\mu} = O(|V_{\tau\mu}|^2)
\]

\[\Lambda_{NP} \sim 1.5 \text{ TeV}\]
"Simplified dynamical models" ["The Return of the LeptoQuark""]

If we ask which tree-level mediators can generate the effective operators required by the EFT fit, we have not many possibilities...

Three main options
(for the combined explanation):

- SU(2)_L
 - singlet
 - triplet

- Vector LQ:
 - U_1
 - U_3

- Scalar LQ:
 - S_1
 - S_3

- Colorless vector:
 - Z'
 - W'
Simplified dynamical models [“The Return of the LeptoQuark”...]

If we ask which tree-level mediators can generate the effective operators required by the EFT fit, we have not many possibilities...

Three main options
(for the combined explanation):

- **SU(2)_L**
 - singlet
 - triplet

Vector LQ: U_1 U_3

Scalar LQ: S_1 S_3

Colorless vector: Z' W'

The U_1 option fits quite nicely... but of course models with more than one mediators are also possible.
Speculations on UV completions
Speculations on UV completions

Two main approaches

Non-perturbative
TeV-scale dynamics
[non-renormalizable models]

Perturbative
TeV-scale dynamics
[renormalizable models]

Long list of interesting attempts in the recent literature, not worth (and practically impossible) to cover them all.

In the following I will now concentrate on one (class of) option(s) that I find particularly interesting.
Speculations on UV completions

Starting observation: a gauge theory proposed in the 70's to unify quarks and leptons by Pati & Salam predicts a massive vector LQ with the correct quantum numbers to fit the anomalies (best single mediator):

Pati-Salam group: \(SU(4) \times SU(2)_L \times SU(2)_R \)

Fermions in \(SU(4) \):

\[
\begin{bmatrix}
Q_L^\alpha \\
Q_L^\beta \\
Q_L^\gamma \\
L_L
\end{bmatrix} \quad \begin{bmatrix}
Q_R^\alpha \\
Q_R^\beta \\
Q_R^\gamma \\
L_R
\end{bmatrix}
\]

Main Pati-Salam idea:
Lepton number as “the 4\(^{th}\) color”

The massive LQ \([U_1]\) arise from the breaking \(SU(4) \rightarrow SU(3)_c \)

The problem of the “original PS model” are the strong bounds on the LQ couplings to 1\(^{st}\) & 2\(^{nd}\) generations [e.g. \(M > 200 \text{ TeV} \) from \(K_L \rightarrow \mu e \)] → we must go beyond the original model
The PS³ model

\[[\text{PS}]^3 = [\text{SU}(4) \times \text{SU}(2)_L \times \text{SU}(2)_R]^3 \]

New idea: at high energies the 3 families are charged under 3 independent gauge groups (gauge bosons carry a flavor index!)

- **UV**
 - \(\psi^L,R_1 \)
 - \(\psi^L,R_2 \)
 - \(\psi^L,R_3 \)

- **Unification** of quarks and leptons [natural explanation for U(1)\(Y \) charges]

- **SM**
 - \(Q_i, u_i, d_i, L_i, e_i \)

- **IR**
 - Light LQ coupled mainly to 3\(^{rd}\) gen.
 - Accidental flavor symmetry “protecting” light-fermions
 - Natural structure of SM Yukawa couplings

“De-unification” (= flavor deconstruction) of the gauge symmetry
\textbf{The PS}^3 \textit{model}

\[[\text{PS}]^3 = [SU(4) \times SU(2)_L \times SU(2)_R]^3 \]

\begin{align*}
\text{PS}_1 &= \text{PS}(5)_{|z=z_1} \\
\text{PS}_2 &= \text{PS}(5)_{|z=z_2} \\
\text{PS}_3 &= \text{PS}(5)_{|z=z_3}
\end{align*}

Unification of quarks and leptons

“De-unification” (= flavor deconstruction) of the gauge symmetry

This construction can find a “natural” justification in the context of models with extra space-time dimensions

The 4D description is apparently more complex, but it allow us to derive precise low-energy phenomenological signatures (\textit{4D renormalizable gauge model})
The PS3 model

High-scale [$\sim 10^3$ TeV]

"vertical" breaking

$\text{PS}_1 \rightarrow \text{SM}_1$

link fields

$\text{PS}_i \times \text{PS}_j \rightarrow \text{PS}_{i+j}$

Low-scale "vertical" Breaking [EWSB]

$\text{SM}_3 \rightarrow \text{QED}_3$

Σ_1

ψ_1

$\Phi_{12}^R \Phi_{12}^L$

Ω_{12}

ψ_2 $\Phi_{23}^R \Phi_{23}^L$

Ω_{23}

ψ_3

PS_1

PS_2

PS_3

H_3

Σ_1

PS3 model

The breaking to the diagonal SM group occurs via appropriate "link" fields, responsible also for the generation of the hierarchy in the Yukawa couplings.

The 2-3 breaking gives a TeV-scale LQ [$+ Z' & G'$] coupled mainly to 3$^{\text{rd}}$ gen.
The PS3 model

Below ~ 100 TeV
Flavor-degeneracy of light quarks

Sub-leading Yukawa terms from higher dim ops:

$$Y_U = \begin{bmatrix} \Delta & V \\ y_t & \end{bmatrix}$$

$$\langle \Phi_{\ell 3}^R \Phi_{\ell 3}^L \rangle$$

$$\langle \Omega_{\ell 3} \rangle$$

$$\Lambda_{23}$$

$$\left(\Lambda_{23}\right)^2$$

$$\Lambda_{23}$$

$$\rightarrow W_L' + W_R' [\sim 5-10 \text{ TeV}]$$

$$\rightarrow LQ [U_1] + Z' + G' [\sim 2-3 \text{ TeV}]$$
The PS3 model

Collider phenomenology and flavor anomalies are controlled by the last-but-one step in the breaking chain.

Despite the apparent complexity, the construction is highly constrained.

The fit to low-energy data is rather good

(*slightly smaller NP effects in R_D, mainly because of radiative constraints*)

Important difference with respect to all other models:
right-handed couplings of the LQ
Possible future implications

“It is very difficult to make predictions, especially about the future”

[attributed to Niels Bohr]
Implications for low-energy flavor physics

If the anomalies are due to NP, we should expect to see several other BSM effects in low-energy observables.

Main message: “super-reach” flavor program for LHCb, but also other flavor physics facilities (Belle-II, Kaons, LFV in charged leptons)
Implications for low-energy flavor physics

If the anomalies are due to NP, we should expect to see several other BSM effects in low-energy observables.

Main message: “super-reach” flavor program for LHCb, but also other flavor physics facilities (Belle-II, Kaons, LFV in charged leptons)

E.g: Possible large $\tau \to \mu$ LFV transitions

Glashow, Guadagnoli, Lane '15
Implications for low-energy flavor physics

If the anomalies are due to NP, we should expect to see several other BSM effects in low-energy observables

Main message: “super-reach” flavor program for LHCb, but also other flavor physics facilities (Belle-II, Kaons, LFV in charged leptons)

E.g: Possible large $\tau \rightarrow \mu$ LFV transitions

Glashow, Guadagnoli, Lane '15

More difficult to make precise predictions for $\mu \rightarrow e$ transitions.

But both $\mu \rightarrow 3e$ and $K_L \rightarrow \mu e$ could be quite close to their present exp. bounds:

$$\text{BR}(\mu \rightarrow 3e) \rightarrow \text{few } 10^{-14}$$

$$\text{BR}(K_L \rightarrow \mu e) \rightarrow \text{few } 10^{-12}$$
Implications for high-p_T physics

Some general considerations:

Independently of the details of the UV models, the anomalies point to NP in the ball-park of direct searches @ LHC

- $R_D(*)$ necessarily points to a low NP scale: $M \sim g \times (1.0 \text{ TeV})$

- $R_K(*)$ also points to a low NP scale, except for (unnaturally) large flavor-violating couplings

This NP could have escaped detection so far only under specific circumstances (that are fulfilled by the proposed UV completions):

- Coupled mainly to 3$^{\text{rd}}$ generation (→ no large coupl. to proton valence quarks)
- No narrow peaks in di-lepton pairs (including tau-lepton pairs)

Significant room for improvement for the corresponding searches @ HL-LHC
But only a collider with (slightly) larger energy (such as HE-LHC) would be able to rule out all reasonable models
Implications for high-p_T physics

Also as far as direct searches are concerned, 3rd gen. LQ are in good shape:
Implications for high-p$_T$ physics

In many appealing UV models the LQ is accompanied by other TeV-scale particles, with dominant coupling to 3rd generation quarks.

E.g.: the “coloron” = non-universal heavy gluon, coupled mainly to 3rd gen.

Di Luzio, Fuentes-Martin, Greljo, Nardecchia, Renner '18
Conclusions

- If these LFU anomalies were confirmed, it would be a fantastic discovery, with far-reaching implications.

- If interpreted as NP signals, both set of anomalies are not in contradiction among themselves & with existing low- & high-energy data. Taken together, they point out to NP coupled mainly to 3rd generation, with a flavor structure connected to that appearing in the SM Yukawa couplings.

- Simplified models with LQ states seem to be favored. However, realistic UV for these models naturally imply a much richer spectrum of states at the TeV scale (and possibly above...).

- The PS3 model I have presented is particularly interesting as example of the change of approach in model building that these anomalies could imply. But many points/possible-variations remains to be clarified/explored...

\[\downarrow\]

A lot of fun ahead of us...
(both on the exp., the pheno, and model-building point of view)