Overview of public Standard Model measurements

<u>Elena Yatsenko</u> (SJTU & TDLI, Shanghai) on behalf of the ATLAS SM group

ATLAS Standard Model Workshop London

September 5th, 2018

Elena Yatsenko

Introduction

All ATLAS SM public results: link

Measurements of electroweak parameters

Effective leptonic weak mixing angle

Drell-Yan cross-section $q\bar{q} \rightarrow Z/\gamma^* \rightarrow \ell\ell$ is expanded as a sum of 9 harmonic polynomials:

$$\frac{d\sigma}{dp_{T}^{\ell\ell} dy^{\ell\ell} dm^{\ell\ell} d\cos\theta d\phi} = \frac{3}{16\pi} \frac{d\sigma^{U+L}}{dp_{T}^{\ell\ell} dy^{\ell\ell} dm^{\ell\ell}} \qquad \begin{array}{l} A_4 \text{ (and } A_3 \text{) sensitive} \\ \text{to weak mixing angle} \\ \left\{ (1 + \cos^2\theta) + \frac{1}{2} A_0 (1 - 3\cos^2\theta) + A_1 \sin 2\theta \cos\phi \right. \\ \left. + \frac{1}{2} A_2 \sin^2\theta \cos 2\phi + A_3 \sin\theta \cos\phi + A_4 \cos\theta \\ + A_5 \sin^2\theta \sin 2\phi + A_6 \sin 2\theta \sin\phi + A_7 \sin\theta \sin\phi \right\} \end{array}$$

4 ATI AS Simulation Preliminary $\sqrt{s} = 8 \text{ TeV}, Z/\gamma^*$ (NLO QCD) 80 GeV < m[#] < 100 GeV 0.09 Improved Born Approximation Effective Born 0.08 0.07 0.06 0.05 0.23 0.231 0 232 0.233 0.234 0.235 $\sin^2\theta'$ Predicted variation of A_4 as a function of $\sin^2 \theta_{\text{off}}^{\ell}$

The

the d

- 0 Measurement in 3 channels. central-central *ee* and $\mu\mu$. central-forward ee, binned in mass and rapidity
 - \rightarrow reduces the dominant source of systematics arising from PDFs
- Extract $\sin^2 \theta_{\text{eff}}^{\ell}$ by parametrising A_4 in likelihood via a linear interpolation model from A_4 vs sin² $\theta_{\text{eff}}^{\ell}$ predictions.

 \rightarrow Cross-check of the sin² θ_{eff}^{ℓ} extraction is performed with A_{FB} measurement from triple-differential DY CS

Effective leptonic weak mixing angle

$\sin^2 \theta_{\text{eff}}^{\ell} = 0.23140 \pm 0.00021 (\text{stat.}) \pm 0.00024 (\text{PDF}) \pm 0.00016 (\text{syst.})$

Channel	ee _{CC}	µµ _{CC}	ee _{CF}	$ee_{CC} + \mu\mu_{CC}$	$ee_{CC} + \mu\mu_{CC} + ee_{CF}$	
Central value	0.23148	0.23123	0.23166	0.23119	0.23140	
	Uncertainties					
Total	68	59	43	49	36	
Stat.	48	40	29	31	21	
Syst.	48	44	32	38	29	
	Uncertainties in measurements					
PDF (meas.)	8	9	7	6	4	
p_T^Z modelling	0	0	7	0	5	
Lepton scale	4	4	4	4	3	
Lepton resolution	6	1	2	2	1	
Lepton efficiency	11	3	3	2	4	
Electron charge misidentification	2	0	1	1	< 1	
Muon sagitta bias	0	5	0	1	2	
Background	1	2	1	1	2	
MC. stat.	25	22	18	16	12	
	Uncertainties in predictions					
PDF (predictions)	37	35	22	33	24	
QCD scales	6	8	9	5	6	
EW corrections	3	3	3	3	3	

 $\times 10^{-5}$

- Measurement uncertainty 36×10^{-5}
- Central-forward is the most precise channel, 1.5M events, (13.5 CC ee+ $\mu\mu$)

W mass measurement and prospects for p_T^W

Eur. Phys. J. C 78 (2018) 110 ATL-PHYS-PUB-2017-021

 χ^2/dof

of Comb

29/27

- An issue in modeling of the W/Z p_T was ۲ observed in m_W measurement: only (N)LL parton shower predictions are in agreement with the data (u_{11}^{ℓ}, p_T^Z) , all resummed calculations fail to describe the observed distributions
- Goal: a measurement of p_T^W with 5 GeV bins to have **direct probe** of the W/Z p_T ratio (target @ 1% unc.)
 - \rightarrow need recoil resolution of the same order
- Pileup degrades the resolution of the recoil \rightarrow in low- μ environment is a great opportunity for this measurement.

<11>

MEASUREMENTS RELEVANT FOR EFT

EFT: Key players

Status of SM measurements

Inclusive diboson channels are extensively studied - variety of results are available.

Rare processes:

VBS	W [±] W [±] jj	WZjj	WW/WZjj	$\gamma\gamma ightarrow W^+W^-$	Zγjj	ZZjj
VBF	Zjj	Wjj				
Tribosons	$Z\gamma\gamma$	$W\gamma\gamma$	$WV\gamma$	$\gamma\gamma\gamma$	WWW	

- A fruitful start of Run2 data analyses for Vector Boson Scattering (VBS): observations of 2 processes.
- Vector Boson Fusion (VBF) : significance well above 5σ .
- **Tribosons**: No 13 TeV results yet. Run1 achievements: one observation and one evidence.
- Differential results are available for inclusive dibosons, VBS, VBS and triboson measurements.

Constraints on anomalous triple gauge couplings (aTGCs): dibosons and VBF anomalous quartic gauge couplings (aQGCs): VBS and tribosons

Latest VBS results

ATLAS-CONF-2018-030 ATLAS-CONF-2018-033

First observation of WZii-EW!

WZjj-EW: observed significance 5.6 σ (3.3 σ exp.)

Measured fiducial cross-section of EWK production:

 $\sigma_{ extsf{Data}}^{ extsf{fid}} = 2.95 \pm 0.49 (extsf{stat.}) \pm 0.23 (extsf{syst.}) extsf{ fb}$

 \rightarrow information needed for EFT interpretation to be published

- Measured EWK cross-section in fiducial PS
- First differential results for EWK+QCD production: variables sensitive to aQGCs: m_T^{WZ} , $\sum p_T^{\ell}$, $\Delta \phi(W, Z)$ and variables sensitive to pQCD ($N_{\text{jets}}(p_T > 40)$ GeV, $N_{\text{jets}}^{\text{gap}}(p_T > 25)$ GeV, m_{jj} , $\Delta \phi(j_1, j_2)$, $\Delta y(j_1, j_2)$)

Elena Yatsenko

Status of VBF results

Physics Letters B 775 (2017) 206 Eur. Phys. J. C 77 (2017) 474

- Measurements in several fiducial regions.
- Differential cross sections of EW and EW+QCD processes: variables distinguishing QCD and EW production, and observables sensitive to aTGCs.

Missing NLO electroweak corrections!

Differential distributions in inclusive dibosons Phys. Rev. D 97 (2018) 032005

- Most of the inclusive diboson channels provide results for differential CSs.
- Include distributions sensitive to aTGCs.

$ZZ \rightarrow 4\ell$ results:

- ZZ → 4ℓ CS is measured as a function of 20 observables.
 → Most of them for the first time!
- m(jet1,jet2) is particularly sensitive to the EWK-ZZjj process
- p_T of leading Z boson is sensitive for aTGC searches.

More differential diboson results:

Elena Yatsenko

W and Z polarisation in diboson events

ATLAS-CONF-2018-034

- Measurement of W_0Z and WZ_0 production in inclusive diboson events.
- Template fit to angular distribution in data.

•
$$f_0^W = 0.26 \pm 0.06, \ f_0^Z = 0.24 \pm 0.04$$

- Observed significance for longitudinal polarisation in W bosons: 4.2σ (3.8σ exp), measurement of longitudinal polarisation in Z bosons.
- Dominated by statistical uncertainties.
- \rightarrow Future measurements: ${\it W}_0{\it Z}_0$ and ${\it W}_0{\it Z}_0 \rightarrow {\it W}_0{\it Z}_0$ production
- \rightarrow A promising avenue for new physics searches!

PDF-sensitive measurements/ Testing pQCD

ATLAS measurements sensitive to PDFs

Magaurant	DDE consistivity		
Measurement	PDF sensitivity		
Inclusive W, Z and asymmetries	Quark flavor separation (u, d, s)		
High mass Drell-Yan	sea quarks at high-x, photon PDFs		
Low mass Drell-Yan	low- x , resummation effects		
W, Z, W/Z + jets	Medium x gluon		
W with charm quarks	Direct sensitivity to s-quarks		
$\gamma/Z + c, b$ production	c, b quarks, intrinsic charm		
p_T^Z	Gluon sensitivity		
$t\bar{t}$ production (total, differential)	Gluon (α_s)		
Single top production	Gluon and <i>b</i> quark		
Inclusive jet, dijet, trijets	High x quarks and gluon $(lpha_s)$		
Isolated photons	Medium and high x gluon		

W/Z precision measurements: 7 TeV

Eur. Phys. J. C 77 (2017) 367

Precision Z: 0.32%, W^+ : 0.6%, W^- : 0.5% \rightarrow Better than NNLO QCD +

NLO EW theory

04 06 0.8 1

- Differential measurements are nearly as precise as integrated CS
- A sensitive test of lepton universality
- Competitive measurement of $|V_{cs}|$ of the CKM matrix

14

ATLAS

Elena Yatsenko

More W/Z results

Phys. Lett. B 759 (2016) 601 JHEP 02 (2017) 117

Cross section ratio measurements: partial cancellation of systematics

 $t\bar{t}/Z$ ratios @ 7, 8, and 13 TeV:

- cancellation of luminosity and some systematic unc.
- Z: constraint of light-quark-sea and gluon densities
- $t\bar{t}$ contributes to gluon density constraint
 - \rightarrow significant power to constraint gluon density at $x \sim 0.1$ and total light-guark sea at x < 0.02

V+jets measurements

• V+jets production is dominated by strong interactions:

- Precision test of pQCD: test state-of-the-art pQCD calculations
- Impact on PDFs understanding
- Background to SM measurements, Higgs and New Physics: important validation of the Matrix Element+Parton Shower MCs
- Input for MC tuning

W/Z+jets

Z+jets @ 13 TeV

to set the scale, discriminant in BSM searches.

 \rightarrow Important <u>test of</u> recent <u>NNLO</u> calculations.

 \rightarrow Differential CSs for $W+\geq 1j:$ sensitivity to H/O corrections and to PDFs

→ Differential CSs for $W+ \ge 2j$: sensitivity to hard parton radiation at large angles, and ME/PS merging schemes

W+jets @ 8 TeV

 $\rightarrow W^+/W^-$ asymmetry, high precision: many experimental and theoretical uncertainties cancel out.

 \rightarrow Valuable input for *u*-, *d*-, and gluon PDFs.

Inclusive and dijet cross section at 13 TeV

JHEP 05 (2018) 195

- Tension between data and NLO theory in a global fit using all p_T and |y| bins. Already seen in previous 8 TeV data
 - \rightarrow sensitive to assumptions on correlations for two-point systematics
- First comparison with NNLO; improved description for $\mu_R = \mu_F = p_T^{/e}$

Elena Yatsenko

- Double-differential **dijet** CS (m_{ii}, v^*)
- Measurement up to $m_{ii} < 9$ TeV.

NLO pQCD predictions and data agree within uncertainties.

α_s determination from multi-jet data

Measure quantity $\frac{R_{\Delta\phi}}{d_{ijet}}$: fraction of dijet events with $\Delta\phi_{dijet} < \Delta\phi_{dijet}^{max}$ in all dijet events, as a function of H_T : $R_{\Delta\phi}(H_T) \rightarrow \alpha_s(Q = H_T/2)$

- **High precision**, many experimental and theoretical uncertainties cancel.
- Extract α_s using $\Delta \phi_{dijet}^{max} = 7\pi/8$ most reliable pQCD predictions.

Transverse energy-energy correlations (TEEC) energy-weighted *angular distribution* of jet pairs. An alternative event shape variable for hadron colliders, not affected by soft divergences.

• Shape of TEEC observables (and its asymmetry) depends on α_s and not very sensitive to PDFs

 α_s results

 $\alpha_s(m_Z)$

0.1127

ightarrow Precision of $lpha_s$ measurements is mainly limited by the scale dependence of NLO pQCD predictions

Jet substructure: soft-drop jet mass

- Jet mass is used for constructing taggers of boosted Z/W/H hadronic decays: crucial for ATLAS search program.
- Presence of non-global logarithms prevented from calculations beyond LL.
- Soft-drop is a jet grooming procedure to remove soft and wide angle radiation from a jet. Formally insensitive to non-global logarithms.
- Recent soft-drop mass calculations at LO + NNLL and NLO + NLL

Measurement of dimensionless mass $\rho^2 = m^{\text{soft drop}}/p_T^{\text{ungroomed}}$ in dijet events; unfolded to particle-level

23/29

Elena Yatsenko

Testing pQCD with photons

- Measurements of the production of high p_T prompt photons in association with jets in hadron colliders provide
 - tests of pQCD predictions in a *cleaner reaction* than jet production
 - constraints on the proton PDFs (*flavour content* when jets are tagged)
 - ${\scriptstyle \bullet }$ input to understand the background to Higgs production and BSM searches
 - \rightarrow validation of Monte Carlo models

isolated single-photon plus (HF) jet

isolated triphoton production

Testing pQCD with photons

- Test of QCD dynamics with angular correlations between the γ and the jet \rightarrow shape of data much closer to direct-photon than to fragmentation processes. Consistent with dominance of t-channel quark exchange.
- Probe of HE content of the proton

 \rightarrow mismodeling of high E_{τ}^{γ} : increase of gluon-splitting contribution (appears only at tree level in the 5F NLO predictions) - higher order calculations are needed.

Test of pQCD with rare SM processes

400

m^{YYY} [GeV]

 \rightarrow improved modelling of triphoton production is needed: MCFM at NLO underestimates data by factor of 2. No NNLO calculations are available.

Soft QCD

Measurement of inelastic pp cross section

- Inelastic cross section is a fundamental quantity that cannot be calculated with perturbative QCD
- Observed rise of σ_{inel} with \sqrt{s}
 - \rightarrow energy dependence cannot be predicted directly by QCD
 - \rightarrow need to be constrained by measurements.
- $\sigma_{\rm inel}^{\rm fid.}$ is measured using events tagged in Minimum Bias counters $2.07 < |\eta| < 3.86$ for $\xi = M_x^2/s > 10^{-6}$.
- $f_D = (\sigma_{SD} + \sigma_{DD})/\sigma_{inel}$ is poorly known and differs between models.
- The fraction of single-sided events, R_{SS}, is related to f_D and used to tune f_D in models.

 Extrapolation to the full PS using 7 TeV measurements to minimise model dependence.

13 TeV: $\sigma_{\text{inel}} = 78.1 \pm 0.6 \text{ (exp.)} \pm 1.3 \text{ (lum.)} \pm 2.6 \text{ (extrap.)} \text{ mb.}$

Minimum bias and underlying event

Eur. Phys. J. C 76 (2016) 502 JHEP 03 (2017) 157

Minimum bias: any inelastic events

≥ 2, p₋ > 100 MeV, |n| < 2.5

Measurement of distributions of charged particles with $p_T > 100$ MeV, $|\eta| < 2.5$

Underlying event: soft processes accompanying hard interactions (ISR, FSR, MPI, CR, BR, ...)

Distributions of charged particles with $p_T > 500$ MeV in events with at least one charged particle with $p_T > 1$ GeV

Level of MC variation >> uncertainty of the measurement! systematic mismodeling is observed \rightarrow An important input for MC tuning.

 \rightarrow Can improve precision of m_W measurement.

- Rich physics program; probing all from soft to hard interactions.
- Outstanding precision of EW parameters, many new ideas are still to be implements.
- Start testing rare SM processes promising for new physics searches.
- Precision of many measurements challenges pQCD and non-pQCD predictions.
- Improvements in precision of many measurements require theory input.
- ${\ensuremath{\, \bullet }}$ Most of the measurements are implemented in ${\rm River},$ data available at ${\rm Hepdata}.$