ATLAS Standard Model Workshop, London, 6th September 2018

Overview of the SM EFT

Tevong You

The Branco Weiss Fellowship Society in Science

Introduction

- Motivation
- SM EFT framework
- EWPT and TGCs
- Updated Run 2 SM EFT fit
- Conclusion

Why SM EFT?

Assuming a SM Higgs and decoupled new physics at higher energies, the SM EFT is the next phenomenological framework

The TeV Scale

What effective theory captures everything we know experimentally about weak interactions?

1933–1982 4-fermion interactions

$$\frown \qquad \sim G_{\rm F} E^2 \qquad \Rightarrow \Lambda \sim {\rm TeV}$$

1982–2011 SM without Higgs

2012-now SM + higher-dimension operators? $\Rightarrow \Lambda \lesssim M_P$?

SMEXIT

Implications of decoupling new physics

- New physics appear to be decoupled at higher energies
- Given particle content, write down *all* terms allowed by symmetries...

- ...Including **higher-dimensional** operators!
 - $\mathcal{L}_{ ext{SM}}^{ ext{dim-6}} = \sum_i rac{c_i}{\Lambda^2} \mathcal{O}_i$
- Generated by new physics at scale $\Lambda \gg v$

- Unique dim-5 Weinberg operator, violates lepton number, predicts neutrino masses
- Modulo flavour structure, there are 59 dim-6 (CP-even) operators in a non-redundant basis

Buchmuller and Wyler (Nucl. Phys. B 268 (1986) 621) Gradkowski et al [arXiv:1008.4884]

• ~19 operators relevant for EWPT, TGC, and Higgs physics

EWPTs	Higgs Physics	TGCs
\mathcal{O}_W	$r = \frac{ig}{2} \left(H^{\dagger} \sigma^a \vec{D^{\mu}} H \right) D^{\nu} W^a_{\mu\nu}$	
$\mathcal{O}_B = rac{ig'}{2} \left(H^\dagger D^{\downarrow} D^{\downarrow} \right)$	$\mathcal{O}_{3W} = g \frac{\epsilon_{abc}}{3!} W^a_\mu {}^\nu W^b_{\nu\rho} W^{c\rho\mu}$	
$\mathcal{O}_T = rac{1}{2} \left(H^\dagger \overleftrightarrow{D}_\mu H ight)^2$	$\mathcal{O}_{HW} = ig(D^{\mu}H$	$)^{\dagger}\sigma^{a}(D^{\nu}H)W^{a}_{\mu\nu}$
$\mathcal{O}_{LL}^{(3)l} = (\bar{L}_L \sigma^a \gamma^\mu L_L) \left(\bar{L}_L \sigma^a \gamma_\mu L_L \right)$	$\mathcal{O}_{HB} = ig'(D^{\mu})$	$(D^{\nu}H)^{\dagger}(D^{\nu}H)B_{\mu\nu}$
$\mathcal{O}_R^e = (iH^{\dagger} \overset{\leftrightarrow}{D_{\mu}} H)(\bar{e}_R \gamma^{\mu} e_R)$	$\mathcal{O}_g = g_s^2 H ^2 G^A_{\mu u} G^{A\mu u}$	
$\mathcal{O}_R^u = (iH^{\dagger} \overset{\leftrightarrow}{D_{\mu}} H)(\bar{u}_R \gamma^{\mu} u_R)$	$\mathcal{O}_{\gamma} = g^{\prime 2} H ^2 B_{\mu\nu} B^{\mu\nu}$	
$\mathcal{O}_R^d = (iH^\dagger \stackrel{\leftrightarrow}{D_\mu} H)(\bar{d}_R \gamma^\mu d_R)$	$\mathcal{O}_H = rac{1}{2} (\partial^\mu H ^2)^2$	
$\mathcal{O}_L^{(3)q} = (iH^{\dagger}\sigma^a D^{\leftrightarrow}_{\mu}H)(\bar{Q}_L \sigma^a \gamma^{\mu} Q_L)$	$\mathcal{O}_f = y_f H ^2 \bar{F}_L H^{(c)} f_R + \text{h.c.}$	
$\mathcal{O}_L^q = (iH^\dagger \overset{\leftrightarrow}{D_\mu} H)(\bar{Q}_L \gamma^\mu Q_L)$	$\mathcal{O}_6 = \lambda H ^6$	

In SILH basis (Giudice et al. hepph/0703164), adopted from Pomarol and Riva (1308.1426)

- Unique dim-5 Weinberg operator, violates lepton number, predicts neutrino masses
- Modulo flavour structure, there are 59 dim-6 (CP-even) operators in a non-redundant basis

Buchmuller and Wyler (Nucl. Phys. B 268 (1986) 621) Gradkowski et al [arXiv:1008.4884]

• ~19 operators relevant for EWPT, TGC, and Higgs physics

EWPTs	Higgs Physics	TGCs
\mathcal{O}_W	$r = \frac{ig}{2} \left(H^{\dagger} \sigma^a \vec{D^{\mu}} H \right) D^{\nu} W^a_{\mu\nu} $	
$\mathcal{O}_B = rac{ig'}{2} \left(H^\dagger D^{\overleftrightarrow} H$	$\mathcal{O}_{3W} = g \frac{\epsilon_{abc}}{3!} W^{a\nu}_{\mu} W^{b}_{\nu\rho} W^{c\rho\mu}$	
$\mathcal{O}_T = rac{1}{2} \left(H^\dagger \overleftrightarrow{D}_\mu H ight)^2$	$\mathcal{O}_{HW} = ig(D^{\mu}H$	$)^{\dagger}\sigma^{a}(D^{\nu}H)W^{a}_{\mu u}$
$\mathcal{O}_{LL}^{(3)l} = (\bar{L}_L \sigma^a \gamma^\mu L_L) \left(\bar{L}_L \sigma^a \gamma_\mu L_L \right)$	$\mathcal{O}_{HB} = ig'(D^{\mu})$	$H)^{\dagger}(D^{\nu}H)B_{\mu\nu}$
$\mathcal{O}_R^e = (iH^{\dagger} \overset{\leftrightarrow}{D_{\mu}} H)(\bar{e}_R \gamma^{\mu} e_R)$	$\mathcal{O}_g = g_s^2 H ^2 G^A_{\mu u} G^{A\mu u}$	
$\mathcal{O}^u_R = (iH^\dagger \overset{\leftrightarrow}{D_\mu} H)(\bar{u}_R \gamma^\mu u_R)$	$\mathcal{O}_{\gamma} = g^{\prime 2} H ^2 B_{\mu\nu} B^{\mu\nu}$	
$\mathcal{O}_R^d = (iH^\dagger \overset{\leftrightarrow}{D_\mu} H) (\bar{d}_R \gamma^\mu d_R)$	$\mathcal{O}_H = rac{1}{2} (\partial^\mu H ^2)^2$	
$\mathcal{O}_L^{(3)q} = (iH^{\dagger}\sigma^a \overset{\leftrightarrow}{D_{\mu}}H)(\bar{Q}_L\sigma^a\gamma^{\mu}Q_L)$	$\mathcal{O}_f = y_f H ^2 \bar{F}_L H^{(c)} f_R + \text{h.c.}$	
$\mathcal{O}_L^q = (iH^\dagger \stackrel{\leftrightarrow}{D_\mu} H)(\bar{Q}_L \gamma^\mu Q_L)$	$\mathcal{O}_6 = \lambda H ^6$	

Combinations of operators constrained in EWPT more easily set to zero in Higgs and TGCs

In SILH basis (Giudice et al. hepph/0703164), adopted from Pomarol and Riva (1308.1426)

- Unique dim-5 Weinberg operator, violates lepton number, predicts neutrino masses
- Modulo flavour structure, there are 59 dim-6 (CP-even) operators in a non-redundant basis

Buchmuller and Wyler (Nucl. Phys. B 268 (1986) 621) Gradkowski et al [arXiv:1008.4884]

~19 operators relevant for EWPT, TGC, and Higgs physics

EWPTs	Higgs Physics	TGCs	
\mathcal{O}_W	$ = \frac{ig}{2} \left(H^{\dagger} \sigma^a \stackrel{\leftrightarrow}{D^{\mu}} H \right) D^{\nu} W^a_{\mu\nu} $		(
$\mathcal{O}_B = \frac{ig'}{2} \left(H^{\dagger} D \right)$	$\left(^{\mu}H ight) \partial^{ u}B_{\mu u}$	$\mathcal{O}_{3W} = g \frac{\epsilon_{abc}}{3!} W^{a\nu}_{\mu} W^{b}_{\nu\rho} W^{c\rho\mu}$	
$\mathcal{O}_T = \frac{1}{2} \left(H^{\dagger} \stackrel{\leftrightarrow}{D}_{\mu} H \right)^2$	$\mathcal{O}_{HW} = ig(D^{\mu}H$	$)^{\dagger}\sigma^{a}(D^{\nu}H)W^{a}_{\mu\nu}$	r
$\mathcal{O}_{LL}^{(3)l} = (\bar{L}_L \sigma^a \gamma^\mu L_L) \left(\bar{L}_L \sigma^a \gamma_\mu L_L \right)$	$\mathcal{O}_{HB} = ig'(D^{\mu})$	$H)^{\dagger}(D^{\nu}H)B_{\mu\nu}$	F
$\mathcal{O}_R^e = (iH^\dagger \overset{\leftrightarrow}{D_\mu} H)(\bar{e}_R \gamma^\mu e_R)$	$\mathcal{O}_g = g_s^2 H ^2 G^A_{\mu\nu} G^{A\mu\nu}$		١
$\mathcal{O}_R^u = (iH^\dagger \overset{\leftrightarrow}{D_\mu} H)(\bar{u}_R \gamma^\mu u_R)$	$\mathcal{O}_{\gamma} = g^{\prime 2} H ^2 B_{\mu\nu} B^{\mu\nu}$		
$\mathcal{O}_R^d = (iH^\dagger \stackrel{\leftrightarrow}{D_\mu} H)(\bar{d}_R \gamma^\mu d_R)$	$\mathcal{O}_H = \frac{1}{2} (\partial^\mu H ^2)^2$		In S
$\mathcal{O}_L^{(3)q} = (iH^{\dagger}\sigma^a \overset{\leftrightarrow}{D_{\mu}}H)(\bar{Q}_L\sigma^a\gamma^{\mu}Q_L)$	$\mathcal{O}_f = y_f H ^2 \bar{F}_L H^{(c)} f_R + \text{h.c.}$		ph,
$\mathcal{O}_L^q = (iH^\dagger \overset{\leftrightarrow}{D_\mu} H)(\bar{Q}_L \gamma^\mu Q_L)$	$\mathcal{O}_6 = \lambda H ^6$		POI

Operators constrained by measurements at per cent level or worse

n SILH basis (Giudice et al. hepph/0703164), adopted from Pomarol and Riva (1308.1426)

- Unique dim-5 Weinberg operator, violates lepton number, predicts neutrino masses
- Modulo flavour structure, there are 59 dim-6 (CP-even) operators in a non-redundant basis

Buchmuller and Wyler (Nucl. Phys. B 268 (1986) 621) Gradkowski et al [arXiv:1008.4884]

• ~19 operators relevant for EWPT, TGC, and Higgs physics

DUUD		maa
EWPTS	Higgs Physics	TGCs
\mathcal{O}_W	$r = \frac{ig}{2} \left(H^{\dagger} \sigma^a D^{\overleftarrow{\mu}} H \right) D^{\nu} W^a_{\mu\nu}$	
$\mathcal{O}_B = rac{ig'}{2} \left(H^\dagger D^{\downarrow} D^{\downarrow} \right)$	$^{\mu}H$ $\partial^{ u}B_{\mu u}$	$\mathcal{O}_{3W} = g \frac{\epsilon_{abc}}{3!} W^{a\nu}_{\mu} W^{b}_{\nu\rho} W^{c\rho\mu}$
$\mathcal{O}_T = \frac{1}{2} \left(H^{\dagger} \stackrel{\leftrightarrow}{D}_{\mu} H \right)^2$	$\mathcal{O}_{HW} = ig(D^{\mu}H)$	$)^{\dagger}\sigma^{a}(D^{\nu}H)W^{a}_{\mu\nu}$
$\mathcal{O}_{LL}^{(3)l} = (\bar{L}_L \sigma^a \gamma^\mu L_L) \left(\bar{L}_L \sigma^a \gamma_\mu L_L \right)$	$\mathcal{O}_{HB} = ig'(D^{\mu})$	$(D^{\nu}H)^{\dagger}(D^{\nu}H)B_{\mu\nu}$
$\mathcal{O}_R^e = (iH^{\dagger} \overset{\leftrightarrow}{D_{\mu}} H) (\bar{e}_R \gamma^{\mu} e_R)$	$\mathcal{O}_g = g_s^2 H ^2 G^A_{\mu u} G^{A\mu u}$	
$\mathcal{O}_R^u = (iH^\dagger \overset{\leftrightarrow}{D_\mu} H)(\bar{u}_R \gamma^\mu u_R)$	$\mathcal{O}_{\gamma} = g^{\prime 2} H ^2 B_{\mu\nu} B^{\mu\nu}$	
$\mathcal{O}_R^d = (iH^\dagger \stackrel{\leftrightarrow}{D_\mu} H)(\bar{d}_R \gamma^\mu d_R)$	$\mathcal{O}_H = rac{1}{2} (\partial^\mu H ^2)^2$	
$\mathcal{O}_L^{(3)q} = (iH^{\dagger}\sigma^a \overset{\leftrightarrow}{D_{\mu}}H)(\bar{Q}_L \sigma^a \gamma^{\mu} Q_L)$	$\mathcal{O}_f = y_f H ^2 \bar{F}_L H^{(c)} f_R + \text{h.c.}$	
$\mathcal{O}_L^q = (iH^\dagger \overset{\leftrightarrow}{D_\mu} H)(\bar{Q}_L \gamma^\mu Q_L)$	$\mathcal{O}_6 = \lambda H ^6$	

Operators benefit from per mille precision at LEP

In SILH basis (Giudice et al. hepph/0703164), adopted from Pomarol and Riva (1308.1426)

LEP EWPT Example

• (Pseudo-)Observables

$$T_{2}^{*} = T_{had} + 3T_{2}^{*} + 3T_{2}^{*} \quad R_{\ell} = \frac{T_{had}}{T_{\ell}} \quad \mathcal{O}_{had} = 12\pi \frac{\Gamma_{e} T_{had}}{\mathcal{O}_{2}^{*}} \quad \mathcal{A}_{FB}^{\dagger} = \frac{3}{4} \mathcal{A}_{e} \mathcal{A}_{f} \quad M_{W} = c_{W} M_{2}$$

$$R_{q} = \frac{\Gamma_{q}}{T_{had}}$$

• Depends on

$$\Gamma_{L}^{L} = \frac{52}{52} \frac{G_{F}}{G_{F}} \frac{M_{E}^{2} M_{E}}{G_{R}} \left[\left(g_{L}^{f} \right)^{2} + \left(g_{R}^{f} \right)^{2} \right] \qquad A_{f} = \frac{\left(g_{L}^{f} \right)^{2} - \left(g_{R}^{f} \right)^{2}}{\left(g_{L}^{f} \right)^{2} + \left(g_{R}^{f} \right)^{2}} \qquad B_{f} = \frac{1}{2} - \frac{1}{2} \sqrt{1 - \frac{4\pi \alpha}{52G_{F}}} \frac{1}{2} \frac{1}{2} - \frac{1}{2} \sqrt{1 - \frac{4\pi \alpha}{52G_{F}}} \frac{1}{2} \frac{1}$$

 Dim-6 operators can modify observables directly through Zff couplings contributions or indirectly through redefinitions of input observables

 $m_{t}^{2} = (m_{z}^{2})^{\circ} (1 + \pi_{t}) \qquad G_{f} = G_{f}^{\circ} (1 - \pi_{uw}^{\circ}) \qquad \propto (m_{t}) = \alpha^{\circ}(m_{z}) (1 + \pi_{y})$

LEP EWPT Example

• Individual (green) and marginalised (red) 95% CL limits

Ellis, Sanz and T.Y. 1410.7703

• 8 (combinations of) operators probed by EWPT

- Assume SM Z and W couplings to fermions in diboson measurements
- Interpret in anomalous TGC framework:

- Assume SM Z and W couplings to fermions in diboson measurements
- Interpret in anomalous TGC framework:

- Assume SM Z and W couplings to fermions in diboson measurements
- Interpret in anomalous TGC framework:

- Assume SM Z and W couplings to fermions in diboson measurements
- Interpret in anomalous TGC framework:

Updated Global SMEFT Fit

J. Ellis, C. Murphy, V. Sanz and TY, 1803.03252

- Combine EWPT, diboson, Higgs data
- Fit to 20 dim-6 CP-even operators simultaneously
- Present results in Warsaw and SILH basis
- Match to **simplified models**

Updated Global SMEFT Fit

• SILH basis

$$\begin{aligned} \mathcal{L}_{\text{SMEFT}}^{\text{SILH}} &\supset \frac{\bar{c}_{W}}{m_{W}^{2}} \frac{ig}{2} \left(H^{\dagger} \sigma^{a} \overrightarrow{D^{\mu}} H \right) D^{\nu} W_{\mu\nu}^{a} + \frac{\bar{c}_{B}}{m_{W}^{2}} \frac{ig'}{2} \left(H^{\dagger} \overrightarrow{D^{\mu}} H \right) \partial^{\nu} B_{\mu\nu} + \frac{\bar{c}_{T}}{v^{2}} \frac{1}{2} \left(H^{\dagger} \overrightarrow{D}_{\mu} H \right)^{2} \\ &+ \frac{\bar{c}_{ll}}{v^{2}} 2(\bar{L}\gamma_{\mu}L)(\bar{L}\gamma^{\mu}L) + \frac{\bar{c}_{He}}{v^{2}}(iH^{\dagger} \overrightarrow{D}_{\mu}H)(\bar{e}_{R}\gamma^{\mu}e_{R}) + \frac{\bar{c}_{Hu}}{v^{2}}(iH^{\dagger} \overrightarrow{D}_{\mu}H)(\bar{u}_{R}\gamma^{\mu}u_{R}) \\ &+ \frac{\bar{c}_{Hd}}{v^{2}}(iH^{\dagger} \overrightarrow{D}_{\mu}H)(\bar{d}_{R}\gamma^{\mu}d_{R}) + \frac{\bar{c}'_{Hq}}{v^{2}}(iH^{\dagger}\sigma^{a} \overrightarrow{D}_{\mu}H)(\bar{Q}_{L}\sigma^{a}\gamma^{\mu}Q_{L}) \\ &+ \frac{\bar{c}_{Hq}}{v^{2}}(iH^{\dagger} \overrightarrow{D}_{\mu}H)(\bar{Q}_{L}\gamma^{\mu}Q_{L}) + \frac{\bar{c}_{HW}}{m_{W}^{2}}ig(D^{\mu}H)^{\dagger}\sigma^{a}(D^{\nu}H)W_{\mu\nu}^{a} + \frac{\bar{c}_{HB}}{m_{W}^{2}}ig'(D^{\mu}H)^{\dagger}(D^{\nu}H)B_{\mu\nu} \\ &+ \frac{\bar{c}_{3W}}{m_{W}^{2}}g^{3}\epsilon_{abc}W_{\mu}^{a\nu}W_{\nu\rho}^{b}W^{c\rho\mu} + \frac{\bar{c}_{g}}{m_{W}^{2}}g_{s}^{2}|H|^{2}G_{\mu\nu}^{A}G^{A\mu\nu} + \frac{\bar{c}_{\gamma}}{m_{W}^{2}}g'^{2}|H|^{2}B_{\mu\nu}B^{\mu\nu} \\ &+ \frac{\bar{c}_{H}}{v^{2}}\frac{1}{2}(\partial^{\mu}|H|^{2})^{2} - \sum_{f=e,u,d}\frac{\bar{c}_{f}}{m_{W}^{2}}y_{f}|H|^{2}\bar{F}_{L}H^{(c)}f_{R} \\ &+ \frac{\bar{c}_{3G}}{m_{W}^{2}}g_{s}^{3}f_{ABC}G_{\mu}^{A\nu}G_{\nu}^{B\rho}G_{\rho}^{C\mu} - \frac{\bar{c}_{uG}}{m_{W}^{2}}4g_{s}y_{u}H^{\dagger} \cdot \bar{Q}_{L}\gamma^{\mu\nu}T_{a}u_{R}G_{\mu\nu}^{A}. \end{aligned}$$

Updated Global SMEFT Fit

• Warsaw basis

$$\begin{split} \mathcal{L}_{\mathrm{SMEFT}}^{\mathrm{Warsaw}} \supset \frac{\bar{C}_{Hl}^{(3)}}{v^2} (H^{\dagger}i\overleftrightarrow{D}_{\mu}^{I}H)(\bar{l}\tau^{I}\gamma^{\mu}l) + \frac{\bar{C}_{Hl}^{(1)}}{v^2} (H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{l}\gamma^{\mu}l) + \frac{\bar{C}_{ll}}{v^2}(\bar{l}\gamma_{\mu}l)(\bar{l}\gamma^{\mu}l) \\ &+ \frac{\bar{C}_{HD}}{v^2} \left| H^{\dagger}D_{\mu}H \right|^2 + \frac{\bar{C}_{HWB}}{v^2} H^{\dagger}\tau^{I}H W_{\mu\nu}^{I}B^{\mu\nu} \\ &+ \frac{\bar{C}_{He}}{v^2} (H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{e}\gamma^{\mu}e) + \frac{\bar{C}_{Hu}}{v^2} (H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{u}\gamma^{\mu}u) + \frac{\bar{C}_{Hd}}{v^2} (H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{d}\gamma^{\mu}d) \\ &+ \frac{\bar{C}_{Hq}^{(3)}}{v^2} (H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{q}\tau^{I}\gamma^{\mu}q) + \frac{\bar{C}_{Hq}^{(1)}}{v^2} (H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{q}\gamma^{\mu}q) + \frac{\bar{C}_{W}}{v^2} \epsilon^{IJK} W_{\mu}^{I\nu} W_{\nu}^{J\rho} W_{\rho}^{K\mu} \end{split}$$

$$\begin{split} \mathcal{L}_{\text{SMEFT}}^{\text{Warsaw}} &\supset \frac{\bar{C}_{eH}}{v^2} (H^{\dagger}H) (\bar{l}eH) + \frac{\bar{C}_{dH}}{v^2} (H^{\dagger}H) (\bar{q}dH) + \frac{\bar{C}_{uH}}{v^2} (H^{\dagger}H) (\bar{q}u\widetilde{H}) \\ &+ \frac{\bar{C}_G}{v^2} f^{ABC} G^{A\nu}_{\mu} G^{B\rho}_{\nu} G^{C\mu}_{\rho} + \frac{\bar{C}_{H\square}}{v^2} (H^{\dagger}H) \Box (H^{\dagger}H) + \frac{\bar{C}_{uG}}{v^2} (\bar{q}\sigma^{\mu\nu}T^A u) \widetilde{H} G^A_{\mu\nu} \\ &+ \frac{\bar{C}_{HW}}{v^2} H^{\dagger}H W^I_{\mu\nu} W^{I\mu\nu} + \frac{\bar{C}_{HB}}{v^2} H^{\dagger}H B_{\mu\nu} B^{\mu\nu} + \frac{\bar{C}_{HG}}{v^2} H^{\dagger}H G^A_{\mu\nu} G^{A\mu\nu} \,. \end{split}$$

Observables

• LEP and SLC EWPTs, M_W from ATLAS, Tevatron

Observable	Measurement	Ref.	SM Prediction	Ref.
$\Gamma_Z \; [\text{GeV}]$	2.4952 ± 0.0023	[39]	2.4943 ± 0.0005	[38]
$\sigma_{\rm had}^0$ [nb]	41.540 ± 0.037	[39]	41.488 ± 0.006	[38]
R^0_ℓ	20.767 ± 0.025	[39]	20.752 ± 0.005	[38]
$A^{0,\ell}_{ m FB}$	0.0171 ± 0.0010	[39]	0.01622 ± 0.00009	[114]
$\mathcal{A}_{\ell}\left(P_{\tau}\right)$	0.1465 ± 0.0033	[39]	0.1470 ± 0.0004	[114]
$\mathcal{A}_{\ell}(\mathrm{SLD})$	0.1513 ± 0.0021	[39]	0.1470 ± 0.0004	[114]
R_b^0	0.021629 ± 0.00066	[39]	0.2158 ± 0.00015	[38]
R_c^0	0.1721 ± 0.0030	[39]	0.17223 ± 0.00005	[38]
$A_{ m FB}^{0,b}$	0.0992 ± 0.0016	[39]	0.1031 ± 0.0003	[114]
$A^{0,c}_{ m FB}$	0.0707 ± 0.0035	[39]	0.0736 ± 0.0002	[114]
\mathcal{A}_b	0.923 ± 0.020	[39]	0.9347	[114]
\mathcal{A}_{c}	0.670 ± 0.027	[39]	0.6678 ± 0.0002	[114]
M_W [GeV]	80.387 ± 0.016	[40]	80.361 ± 0.006	[114]
M_W [GeV]	80.370 ± 0.019	[94]	80.361 ± 0.006	[114]

- LEP WW measurements
- ATLAS WW high pT overflow bin

Tevong You (Cambridge)

Observables

• ATLAS+CMS Higgs Run 1

Production	Decay	Signal Strength	Production	Decay	Signal Strength
ggF	$\gamma\gamma$	$1.10^{+0.23}_{-0.22}$	Wh	$\tau \tau$	-1.4 ± 1.4
ggF	ZZ	$1.13_{-0.31}^{+0.34}$	Wh	bb	1.0 ± 0.5
ggF	WW	0.84 ± 0.17	Zh	$\gamma\gamma$	$0.5^{+3.0}_{-2.5}$
ggF	$\tau \tau$	1.0 ± 0.6	Zh	WW	$5.9^{+2.6}_{-2.2}$
VBF	$\gamma\gamma$	1.3 ± 0.5	Zh	$\tau \tau$	$2.2^{+2.2}_{-1.8}$
VBF	ZZ	$0.1^{+1.1}_{-0.6}$	Zh	bb	0.4 ± 0.4
VBF	WW	1.2 ± 0.4	tth	$\gamma\gamma$	$2.2^{+1.6}_{-1.3}$
VBF	$\tau \tau$	1.3 ± 0.4	tth	WW	$5.0^{+1.8}_{-1.7}$
Wh	$\gamma\gamma$	$0.5^{+1.3}_{-1.2}$	tth	$\tau \tau$	$-1.9^{+3.7}_{-3.3}$
Wh	WW	$1.6^{+1.2}_{-1.0}$	tth	bb	1.1 ± 1.0
pp	$Z\gamma$	$2.7^{+4.6}_{-4.5}$	pp	$\mu\mu$	0.1 ± 2.5

Observables

• ATLAS+CMS Higgs Run 2

	Production	Decay	Sig. Stren.		Production	Decay	Sig. Stren.
[96]	1-jet, $p_T > 450$	$b\bar{b}$	$2.3^{+1.8}_{-1.6}$	[105]	pp	$\mu\mu$	-0.1 ± 1.4
[97]	Zh	$b\bar{b}$	0.9 ± 0.5	[106]	Zh	$b\bar{b}$	$0.69^{+0.35}_{-0.31}$
[97]	Wh	$b\bar{b}$	1.7 ± 0.7	[106]	Wh	$b\bar{b}$	$1.21_{-0.42}^{+0.45}$
[98]	$t\bar{t}h$	$b\bar{b}$	$-0.19^{+0.80}_{-0.81}$	[107]	$t\bar{t}h$	$b\bar{b}$	$0.84^{+0.64}_{-0.61}$
[99]	$t\bar{t}h$	$1\ell + 2\tau_h$	$-1.20^{+1.50}_{-1.47}$	[108]	$t\bar{t}h$	$2\ell os + 1\tau_h$	$1.7^{+2.1}_{-1.9}$
[99]	$t\bar{t}h$	$2\ell ss + 1\tau_h$	$0.86^{+0.79}_{-0.66}$	[108]	$t\bar{t}h$	$1\ell + 2\tau_h$	$-0.6^{+1.6}_{-1.5}$
[99]	$t\bar{t}h$	$3\ell + 1\tau_h$	$1.22^{+1.34}_{-1.00}$	[108]	$t\bar{t}h$	$3\ell + 1\tau_h$	$1.6^{+1.8}_{-1.3}$
[100]	$t\bar{t}h$	$2\ell ss$	$1.7^{+0.6}_{-0.5}$	[108]	$t\bar{t}h$	$2\ell ss + 1\tau_h$	$3.5^{+1.7}_{-1.3}$
[100]	$t\bar{t}h$	3ℓ	$1.0^{+0.8}_{-0.7}$	[108]	$t\bar{t}h$	3ℓ	$1.8^{+0.9}_{-0.7}$
[100]	$t\bar{t}h$	4ℓ	$0.9^{+2.3}_{-1.6}$	[108]	$t\bar{t}h$	$2\ell ss$	$1.5^{+0.7}_{-0.6}$
[101]	0-jet	WW	$0.9^{+0.4}_{-0.3}$	[109]	VBF	WW	$1.7^{+1.1}_{-0.9}$
[101]	1-jet	WW	1.1 ± 0.4	[109]	Wh	WW	$3.2^{+4.4}_{-4.2}$
[101]	2-jet	WW	1.3 ± 1.0	[110]	$B(h \to \gamma \gamma)/B(h \to 4\ell)$		$0.69^{+0.15}_{-0.13}$
[101]	VBF 2-jet	WW	1.4 ± 0.8	[110]	0-jet	4ℓ	$1.07^{+0.27}_{-0.25}$
[101]	Vh 2-jet	WW	$2.1^{+2.3}_{-2.2}$	[110]	1-jet, $p_T < 60$	4ℓ	$0.67^{+0.72}_{-0.68}$
[101]	Wh 3-lep	WW	-1.4 ± 1.5	[110]	1-jet, $p_T \in (60, 120)$	4ℓ	$1.00^{+0.63}_{-0.55}$
[102]	ggF	$\gamma\gamma$	$1.11_{-0.18}^{+0.19}$	[110]	1-jet, $p_T \in (120, 200)$	4ℓ	$2.1^{+1.5}_{-1.3}$
[102]	VBF	$\gamma\gamma$	$0.5^{+0.6}_{-0.5}$	[110]	2-jet	4ℓ	$2.2^{+1.1}_{-1.0}$
[102]	$t\bar{t}h$	$\gamma\gamma$	2.2 ± 0.9	[110]	"BSM-like"	4ℓ	$2.3^{+1.2}_{-1.0}$
[102]	Vh	$\gamma\gamma$	$2.3^{+1.1}_{-1.0}$	[110]	VBF, $p_T < 200$	4ℓ	$2.14^{+0.94}_{-0.77}$
[103]	ggF	4ℓ	$1.20^{+0.22}_{-0.21}$	[110]	Vh lep	4ℓ	$0.3^{+1.3}_{-1.2}$
[104]	0-jet	$\tau \tau$	0.84 ± 0.89	[110]	$t\bar{t}h$	4ℓ	$0.51^{+0.86}_{-0.70}$
[104]	boosted	$\tau \tau$	$1.17\substack{+0.47\\-0.40}$				
[104]	VBF	$\tau \tau$	$1.11_{-0.35}^{+0.34}$				

Observables

Including kinematical information facilitated by **STXS**

Sig. Stren. Production Sig. Stren. Production Decay Decay $2.3^{+1.8}_{-1.6}$ [96] 1-jet, $p_T > 450$ $b\bar{b}$ 105 -0.1 ± 1.4 pp $\mu\mu$ $0.69^{+0.35}_{-0.31}$ [97 Zh $b\bar{b}$ Zh $b\bar{b}$ 0.9 ± 0.5 106 $1.21_{-0.42}^{+0.45}$ Wh $b\bar{b}$ Wh $b\bar{b}$ 97 1.7 ± 0.7 [106] $t\bar{t}h$ $b\bar{b}$ $-0.19^{+0.80}_{-0.81}$ $t\bar{t}h$ $b\bar{b}$ $0.84_{-0.61}^{+0.64}$ [98] [107] $-1.20^{+1.50}_{-1.47}$ $1.7^{+2.1}_{-1.9}$ [99] $t\bar{t}h$ [108] $t\bar{t}h$ $1\ell + 2\tau_h$ $2\ell os + 1\tau_h$ $0.86^{+0.79}_{-0.66}$ $-0.6^{+1.6}_{-1.5}$ [99] $t\bar{t}h$ $2\ell ss + 1\tau_h$ [108] $t\bar{t}h$ $1\ell + 2\tau_h$ $1.22^{+1.34}_{-1.00}$ $1.6^{+1.8}_{-1.3}$ $t\bar{t}h$ $t\bar{t}h$ [99] [108] $3\ell + 1\tau_h$ $3\ell + 1\tau_h$ $1.7^{+0.6}_{-0.5}$ $3.5^{+1.7}_{-1.3}$ $t\bar{t}h$ $t\bar{t}h$ [100] $2\ell ss$ [108] $2\ell ss + 1\tau_h$ $1.0^{+0.8}_{-0.7}$ $1.8\substack{+0.9 \\ -0.7}$ [100] $t\bar{t}h$ [108] $t\bar{t}h$ 3ℓ 3ℓ $0.9^{+2.3}_{-1.6}$ $1.5^{+0.7}_{-0.6}$ $t\bar{t}h$ $t\bar{t}h$ [100] 4ℓ [108] $2\ell ss$ $0.9^{+0.4}_{-0.3}$ $1.7^{+1.1}_{-0.9}$ [101]0-jet WW[109]VBF WW $3.2^{+4.4}_{-4.2}$ [101]1-jet WW 1.1 ± 0.4 [109]WhWW $0.69^{+0.15}_{-0.13}$ $B(h \to \gamma \gamma) / B(h \to 4\ell)$ [101]2-jet WW 1.3 ± 1.0 [110] $1.07^{+0.27}_{-0.25}$ [101]VBF 2-jet WW 1.4 ± 0.8 [110]0-iet 4ℓ $0.67^{+0.72}_{-0.68}$ $2.1^{+2.3}_{-2.2}$ [101]Vh 2-jet WW[110]1-jet, $p_T < 60$ 4ℓ $1.00^{+0.63}_{-0.55}$ [101]Wh 3-lep WW -1.4 ± 1.5 [110] 1-jet, $p_T \in (60, 120)$ 4ℓ $1.11_{-0.18}^{+0.19}$ $2.1^{+1.5}_{-1.3}$ [102]ggF[110]1-jet, $p_T \in (120, 200)$ 4ℓ $\gamma\gamma$ $0.5\substack{+0.6 \\ -0.5}$ $2.2^{+1.1}_{-1.0}$ [102]VBF [110]2-jet 4ℓ $\gamma\gamma$ $2.3^{+1.2}_{-1.0}$ [102] $t\bar{t}h$ 2.2 ± 0.9 [110]"BSM-like" 4ℓ $\gamma\gamma$ $2.14_{-0.77}^{+0.94}$ [102] $2.3^{+1.1}_{-1.0}$ Vh[110]VBF, $p_T < 200$ 4ℓ $\gamma\gamma$ $1.20^{+0.22}_{-0.21}$ $0.3^{+1.3}_{-1.2}$ [103][110]Vh lep ggF 4ℓ 4ℓ $0.51_{-0.70}^{+0.86}$ $t\bar{t}h$ [104]0-jet 0.84 ± 0.89 [110] 4ℓ $\tau\tau$ $1.17\substack{+0.47 \\ -0.40}$ [104]boosted $\tau \tau$ $1.11_{-0.35}^{+0.34}$ [104]VBF $\tau \tau$

• ATLAS+CMS Higgs Run 2

Simplified Template Cross-Sections

ATLAS preliminary

Sub-division into kinematic regions for production processes

• Facilitates combination and interpretation

STXS measurements

• STXS dim-6 predictions

Cross-section region	$\sum_i A_i c_i$	
$gg \to H \ (0\text{-jet})$		
$gg \to H \ (1\text{-jet}, \ p_T^H < 60 \ \text{GeV})$	$56c'_a$	
$gg \rightarrow H \ (1\text{-jet}, \ 60 \leq p_T^H < 120 \ \text{GeV})$	5	
$gg \to H$ (1-jet, $120 \le p_T^H < 200 \text{ GeV}$)	$56c'_{g} + 18c3G + 11c2G$	
$gg \to H \ (1\text{-jet}, \ p_T^H \ge 200 \ \text{GeV})$	$56c'_{g} + 52$ c3G + 34c2G	
$gg \rightarrow H \ (\geq 2\text{-jet}, \ p_T^H < 60 \ { m GeV})$	$56c'_a$	
$gg \rightarrow H \ (\geq 2\text{-jet}, \ 60 \leq p_T^H < 120 \ \text{GeV})$	$56c'_q + 8c3G + 7c2G$	
$gg \rightarrow H \ (\geq 2\text{-jet}, \ 120 \leq p_T^H < 200 \ \text{GeV})$	$56c'_{g} + 23$ c3G $+ 18$ c2G	
$gg \rightarrow H \ (\geq 2\text{-jet}, \ p_T^H \geq 200 \ \text{GeV})$	$56c'_g + 90$ c3G + 68 c2G	
$gg ightarrow H~(\geq 2 ext{-jet VBF-like},~p_T^{j_3} < 25~ ext{GeV})$	$56c'_g$	
$gg \to H \ (\geq 2\text{-jet VBF-like}, \ p_T^{j_3} \geq 25 \ \text{GeV})$	$56c'_g + 9$ c3G $+ 8$ c2G	
$qq ightarrow Hqq~({ m VBF-like},~p_T^{j_3} < 25~{ m GeV})$	$-1.0 { m cH} - 1.0 { m cT} + 1.3 { m cWW} - 0.023 { m cB} - 4.3 { m cHW}$	
	-0.29 cHB + 0.092 cHQ - 5.3 cpHQ - 0.33 cHu + 0.12 cHd	
$qq ightarrow Hqq~({ m VBF-like},~p_T^{j_3} \ge 25~{ m GeV})$	$-1.0 {\tt cH} - 1.1 {\tt cT} + 1.2 {\tt cWW} - 0.027 {\tt cB} - 5.8 {\tt cHW}$	
	-0.41 cHB + 0.13 cHQ - 6.9 cpHQ - 0.45 cHu + 0.15 cHd	
$qq ightarrow Hqq \; (p_T^j \geq 200 { m GeV})$	$-1.0 {\tt cH} - 0.95 {\tt cT} + 1.5 {\tt cWW} - 0.025 {\tt cB} - 3.6 {\tt cHW}$	
	-0.24 cHB + 0.084 cHQ - 4.5 cpHQ - 0.25 cHu + 0.1 cHd	
$qq \rightarrow Hqq \ (60 \le m_{jj} < 120 \text{ GeV})$	-0.99 cH - 1.2 cT + 7.8 cWW - 0.19 cB - 31 cHW	
	-2.4 cHB + 0.9 cHQ - 38 cpHQ - 2.8 cHu + 0.9 cHd	
$qq \rightarrow Hqq ~({ m rest})$	$-1.0 \mathtt{cH} - 1.0 \mathtt{cT} + 1.4 \mathtt{cWW} - 0.028 \mathtt{cB} - 6.2 \mathtt{cHW}$	
	-0.42 cHB + 0.14 cHQ - 6.9 cpHQ - 0.42 cHu + 0.16 cHd	
$aa/a\bar{a} \rightarrow ttH$	-0.98 cH+2.9 cu+0.93 cG+310 cuG	Hays, Sanz, Zemaityte
$gg/qq \rightarrow \iota \iota II$	+27c3G -13 c2G	[LHCHXSWG-INT-2017-01]

Tevong You (Cambridge)

STXS

• STXS dim-6 predictions

Good agreement with optimised non-STXS fit

• Though more information lost in VH case

De Blas, Lohwasser, Musella, Mimasu [in progress]

• SILH basis, fit each operator individually

• SILH basis, fit each operator individually

• SILH basis, fit all operators simultaneously

• Warsaw basis, fit each operator individually

• Warsaw basis, fit all operators simultaneously

Marginalised 0.10.050. -0.05 pre-LHC Run 2 only All data ٠ -0.1 $\begin{array}{c|c} 10^{-1} \bar{C}_{dH} \\ 10^{-1} \bar{C}_{eH} \\ \bar{C}_{HB} \\ \bar{C}_{HB} \\ \bar{C}_{Hd} \\ \bar{C}_{Hd} \\ \bar{C}_{He} \\ \bar{C}_{Hu} \\ \bar{C}$ \bar{C}_{HWB} $\bar{C}_{\ell\ell}$ $^{-1}\bar{C}_{uG}$ $^{-2}\bar{C}_{uH}$ $)^{-1}\bar{C}_W$

• Warsaw basis, improvement from Run 1 to 2 (lower is better) for individual fit

• Warsaw basis, improvement from Run 1 to 2 (lower is better) for marginalised fit

• Warsaw basis, summary

• Simplified models: stops (Run 1)

• Simplified models: stops (Run 2)

 $\tan\beta=20$

• Simplified models: renormalisable SM extensions

Name	Spin	SU(3)	SU(2)	U(1)	Name	Spin	SU(3)	SU(2)	U(1)
S	0	1	1	0	Δ_1	$\frac{1}{2}$	1	2	$-\frac{1}{2}$
\mathcal{S}_1	0	1	1	1	Δ_3	$\frac{1}{2}$	1	2	$-\frac{1}{2}$
φ	0	1	2	$\frac{1}{2}$	Σ	$\frac{1}{2}$	1	3	0
Ξ	0	1	3	0	Σ_1	$\frac{1}{2}$	1	3	-1
Ξ_1	0	1	3	1	U	$\frac{1}{2}$	3	1	$\frac{2}{3}$
B	1	1	1	0	D	$\frac{1}{2}$	3	1	$-\frac{1}{3}$
\mathcal{B}_1	1	1	1	1	Q_1	$\frac{1}{2}$	3	2	$\frac{1}{6}$
\mathcal{W}	1	1	3	0	Q_5	$\frac{1}{2}$	3	2	$-\frac{5}{6}$
\mathcal{W}_1	1	1	3	1	Q_7	$\frac{1}{2}$	3	2	$\frac{7}{6}$
N	$\frac{1}{2}$	1	1	0	T_1	$\frac{1}{2}$	3	3	$-\frac{1}{3}$
E	$\frac{1}{2}$	1	1	-1	T_2	$\frac{1}{2}$	3	3	$\frac{2}{3}$

Classification and tree-level matching dictionary

De Blas, Criado, Perez-Victoria, Santiago [1711.10391]

• Simplified models: renormalisable SM extensions

Model	χ^2	$\chi^2/n_{ m d}$	Coupling	Mass / TeV
SM	157	0.987	-	-
\mathcal{S}_1	156	0.986	$ y_{\mathcal{S}_1} ^2 = (6.3 \pm 5.9) \cdot 10^{-3}$	$M_{\mathcal{S}_1} = (9.0, 49)$
φ , Type I	156	0.986	$Z_6 \cdot \cos\beta = -0.64 \pm 0.59$	$M_{\varphi} = (0.9, 4.3)$
Ξ	155	0.984	$ \kappa_{\Xi} ^2 = (4.2 \pm 3.4) \cdot 10^{-3}$	$M_{\Xi} = (12, 35)$
N	155	0.978	$ \lambda_N ^2 = (1.8 \pm 1.2) \cdot 10^{-2}$	$M_N = (5.8, 13)$
\mathcal{W}_1	155	0.984	$\left \hat{g}_{\mathcal{W}_1}^{\phi} \right ^2 = (3.3 \pm 2.7) \cdot 10^{-3}$	$M_{W_1} = (4.1, 13)$
E	157	0.993	$ \lambda_E ^2 < 1.2 \cdot 10^{-2}$	$M_E > 9.2$
Δ_3	156	0.990	$ \lambda_{\Delta_3} ^2 < 1.9 \cdot 10^{-2}$	$M_{\Delta_3} > 7.3$
Σ	157	0.992	$\left \lambda_{\Sigma}\right ^2 < 2.9 \cdot 10^{-2}$	$M_{\Sigma} > 5.9$
Q_5	156	0.990	$ \lambda_{Q_5} ^2 < 0.18$	$M_{Q_5} > 2.4$
T_2	157	0.992	$\left \lambda_{T_2}\right ^2 < 7.1 \cdot 10^{-2}$	$M_{T_2} > 3.8$
S	157	0.993	$\left y_{\mathcal{S}}\right ^2 < 0.32$	$M_S > 1.8$
Δ_1	157	0.993	$ \lambda_{\Delta_1} ^2 < 5.7 \cdot 10^{-3}$	$M_{\Delta_1} > 13$
Σ_1	157	0.993	$ \lambda_{\Sigma_1} ^2 < 7.3 \cdot 10^{-3}$	$M_{\Sigma_1} > 12$
U	157	0.993	$ \lambda_U ^2 < 2.8 \cdot 10^{-2}$	$M_U > 6.0$
D	157	0.993	$ \lambda_D ^2 < 1.4 \cdot 10^{-2}$	$M_D > 8.4$
Q_7	157	0.993	$ \lambda_{Q_7} ^2 < 7.7 \cdot 10^{-2}$	$M_{Q_7} > 3.6$
T_1	157	0.993	$ \lambda_{T_1} ^2 < 0.13$	$M_{T_1} > 3.0$
\mathcal{B}_1	157	0.993	$\left \hat{g}_{\mathcal{B}_{1}}^{\phi}\right ^{2} < 2.4 \cdot 10^{-3}$	$M_{\mathcal{B}_1} > 21$

Streamlines process of interpreting limits on BSM parameter space

Conclusion

- SM EFT framework is the Fermi theory of the 21st century
- Systematic classification of decoupled new physics
- Correlates measurements and eases interpretation
- Finding patterns of deviations will give clues to the underlying fundamental theory at higher energies

Conclusion

Spotted at CERN:

- SM EFT a systematic approach to decoupled new physics
- Job is now to classify phenomenology, from bottom-up and top-down
- Precision experimental measurements may find a pattern of deviations

Backup

Coefficient	Z -pole + m_W	WW at LEP2	Higgs Run1 Higgs Run2		LHC WW high- p_T
\bar{C}_{dH}	×	×	42.4	57.6	×
\bar{C}_{eH}	×	×	49.6	50.4	×
\bar{C}_G	×	×	2.4	97.6	×
\bar{C}_{HB}	×	×	18.6	81.4	×
$\bar{C}_{H\square}$	×	×	19.3	80.7	0.01
\bar{C}_{Hd}	99.85	×	0.04	0.1	×
\bar{C}_{HD}	99.92	0.06	×	×	×
\bar{C}_{He}	99.99	0.01	×	×	×
\bar{C}_{HG}	×	×	41.1	58.9	0.03
$\bar{C}^{(1)}_{H\ell}$	99.97	0.03	×	×	×
$\bar{C}^{(3)}_{H\ell}$	99.56	0.41	×	×	0.01
$\bar{C}_{Hq}^{(1)}$	99.98	×	×	×	×
$\bar{C}_{Hq}^{(3)}$	98.5	0.96	0.19	0.31	0.07
\bar{C}_{Hu}	99.3	×	0.2	0.42	0.04
\bar{C}_{HW}	×	×	18.3	81.7	×
\bar{C}_{HWB}	57.7	0.02	8.2	34.1	×
$\bar{C}_{\ell\ell}$	99.66	0.3	×	0.01	×
\bar{C}_{uG}	×	×	8.9	91.1	×
\bar{C}_{uH}	×	×	10.9	89.1	×
\bar{C}_W	×	96.2	×	×	3.8

Backup

Backup

$$\frac{v^2}{\Lambda^2} C_{HWB} = \frac{g_1 g_2}{16\pi} \Delta S, \quad \frac{v^2}{\Lambda^2} C_{HD} = -\frac{g_1 g_2}{2\pi (g_1 + g_2)} \Delta T,$$

Higgs constraints on dim-6 operators

• Operators affect Higgs signal strength measurements, differential distributions

LHC8

 $\dot{c}_W = -0.025$

180

p_(GeV)

200

220

240

Tevong You