Recent STAR Jet and High p_T Results

Li Yi 易立 ShanDong University

Outline

- Motivation
- Jet geometry selection with trigger bias
- Dihadron with event shape engineering
- Summary

Jets in Vacuum: pp@200 GeV

Jets: reduce complexity of many hadrons to single objects

Well described by NLO pQCD → Jets as high precision tool

Jets as QGP Probe

partonic energy loss:

- gluon radiation (primary)
- collisional energy loss (small)
- —> broadening and softening

Experimental Knobs on Jet Energy Loss

- Collision energies
 - Parton spectra
 - Medium properties
- Jet geometry selections with trigger bias
- Medium event shape engineering

Jet Geometry Selections with Trigger Bias

Hadron and jet triggers —> Surface bias

Opportunity for jet vertex and dijet orientation selections

Leading Hadron Recoiled Jets

STAR, PRC **96**, 024905 (2017)

Leading hadron

$$\frac{1}{N_{trig}^{h}} \frac{dN_{jet}}{dp_{T,jet}} = \frac{1}{\sigma^{AA \to h+X}} \frac{d\sigma^{AA \to h+jet+X}}{dp_{T,jet}}$$

Measurable

Calculable in pQCD (in vacuum)

charged jet R = 0.3

Energy Shift Out of Cone

R = 0.5

STAR, PRC 96, 024905 (2017)

Spectrum shift → energy transport out-of-cone

System			$Au + Au \sqrt{s_{NN}} = 200 \text{ GeV}$	$Pb+Pb\sqrt{s_{NN}} = 2.76 \text{ TeV}$
$p_{\mathrm{T,jet}}^{\mathrm{ch}}$ range (GeV/c)			[10,20]	[60,100]
			p_{T} -shift of $Y\left(p_{\mathrm{T,jet}}^{\mathrm{ch}}\right)$ (GeV/c)	
			peripheral→central	p+p→central
R		0.2	$-4.4 \pm 0.2 \pm 1.2$	
	0.3		$-5.0 \pm 0.5 \pm 1.2$	
		0.4	$-5.1 \pm 0.5 \pm 1.2$	
		0.5	$-2.8 \pm 0.2 \pm 1.5$	-8 ± 2

ALICE, JHEP 09 (2015) 170

R=0.5: smaller shift at RHIC than LHC

ightharpoonup lower energy loss at RHIC but larger $\Delta p_T/p_T^{jet}$ at RHIC

Energy Shift Out of Cone

STAR, PRC 96, 024905 (2017)

ALICE, JHEP 09 (2015) 170

R=0.5: smaller shift at RHIC than LHC

ightharpoonup lower energy loss at RHIC but larger $\Delta p_T/p_T^{jet}$ at RHIC

Not a cross section measurement per trigger instead of per event

- No N_{coll} needed (from Glauber)
- Minimal sensitivity to cold nuclear matter effect

Jet Broadening

Leading hadron

Smaller R, larger energy shift

Broadening for R = 0.4

Hard-core Dijets

Locate dijet with high p_T particle cuts

—> removes almost all background

Geometric matching

-> no combinatoric jets

Reconstruct jets with low p_T particle cuts

-> recover all constituents

Dijets Asymmetry

STAR, PRL **119**, 062301 (2017)

$$A_J = \frac{p_T^{\text{Lead}} - p_T^{\text{SubLead}}}{p_T^{\text{Lead}} + p_T^{\text{SubLead}}}$$

for hard core matched dijets

Momentum balance restored to pp baseline for $\mathbf{R} = \mathbf{0.4}$, after adding particle < 2 GeV/c

Substructure zg

for hard core matched dijets

Li & Vitev arXiv: 1801.00008

also see: Chang et al. PLB 781 (2018) 423

No significant splitting modification

How are Hard-core Dijets Modified?

- Softening for $p_T < 2 \text{ GeV/}c$
- Energy recovered in narrow cone R=0.4
- No substructure z_g modification seen

Hard-core dijets

Trigger Bias Effect

Broadening beyond R = 0.4

Energy recovered in R = 0.4

Leading hadron

Observed difference can be related to in medium path length/amount of diffusion of medium induced soft gluon radiation (enhancement at fixed $p_T < 2 \text{ GeV}/c$) in the QGP

Differential Measurements toward Jet Geometry Engineering

STAR Run 14: 20x dijets

Evolution of A_{J:} more balanced in peripheral collisions

Parameter space scan (R, p_TLead, p_TSub, p_TConst) —> "Jet geometry engineering"

Medium Event Shape Engineering (ESE)

- Jet energy loss depends on path length
- Azimuthal anisotropy of the medium: jet angle matters
- Event-by-event fluctuations:
 same centrality ≠ same event shape

Dihadron Correlations with ESE

Left vs Right Trigger

Left/Right mirror symmetric trigger selection w.r.t. EP

Otherwise, information could be averaged out

Inclusive Dihadron Correlation

Left/Right separation: asymmetric path length Away-side particles escaping preferentially toward in-plane direction

q-Selected Dihadron Correlation

High-p_T particles penetrate more with short path length

q-Selected Dihadron Correlation

High-p_T particles penetrate more with short path length Low-p_T particles pushed toward in-plane with stronger effect for large q₂

Summary for ESE Dihadron

Left/Right selection of trigger particles reveals path-length dependence of jet penetration

- Event shape engineering with q₂ greatly enhances path-length asymmetry while preserving multiplicity
 Low p_T particles are pushed toward in-plane direction with stronger effect in large q₂ events
- Coupling with expanding medium?

Probing the Jet Modification at RHIC

Significantly enhanced understanding of jet modifications at RHIC

- pp in very good agreement with theory (Di-jets, PRD 95 (2017) 71103 (R))
- Unbiased recoil jets highly suppressed due to medium induced broadening
- Total E_{loss} less than at LHC (Hadron-jet correlations, PRC 96 (2017) 24905)
- Lost energy re-emerges at low p_T not z_T
 (γ-hadron correlations, PLB 760 (2016) 689)
- Di-jet energy imbalance largely recovered within R=0.4 when low p_T hadrons included

```
(Di-jet A<sub>.</sub>, PRL 119 (2017) 062301 - Editor's suggestion )
```

 z_g unmodified for hard core jets (preliminary release)

Event shape engineering enhances path length dependence in dihadron correlations

```
(preliminary release)
```

γ-jet, jet in pA, jet inherent angular scale, flavor jet ...
 (-> Hard Probes 2018)