
Opportunities and Challenges with Jets at LHC and beyond IOPP/CCNU, Wuhan, June 11, 2018

Hadronization: From Dilute to Dense Systems

Work in collaboration with

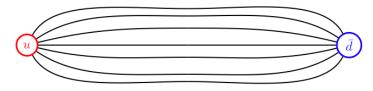
Michael Kordell

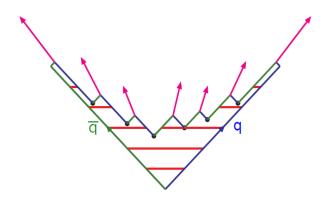
Kyongchol Han

Che Ming Ko

Overview

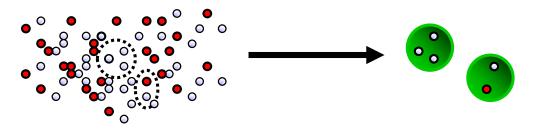
- Hadronization
- Hybrid Hadronization
- Adding a Medium
- JETSCAPE


Hadronization

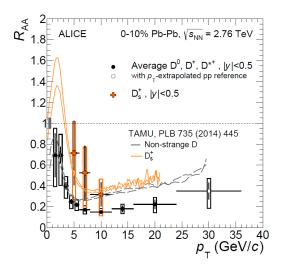


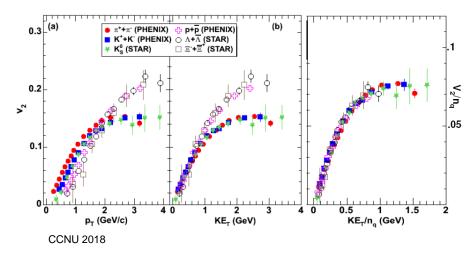
String Fragmentation

■ Color flux expelled from the QCD vacuum → color flux tubes → string-like behavior.



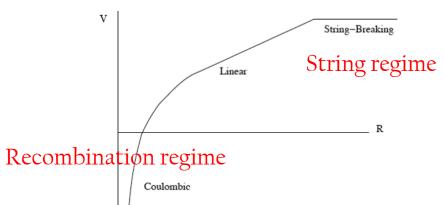
- Lund string fragmentation picture
- Successful phenomenology starting at PETRA, LEP, ... \rightarrow PYTHIA




Quark Recombination

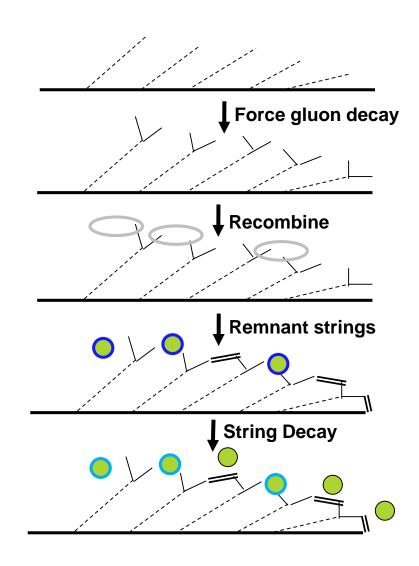
Densely populated phase space: Recombination of quarks into mesons and baryons.

- Recombination models started around the same time as string models. Successes:
 - ☐ Exclusive processes, leading particle effect
 - \square Heavy ion physics: baryon/meson ratios, elliptic flow scaling, heavy quark sector (D_s)



Hybrid Hadronization

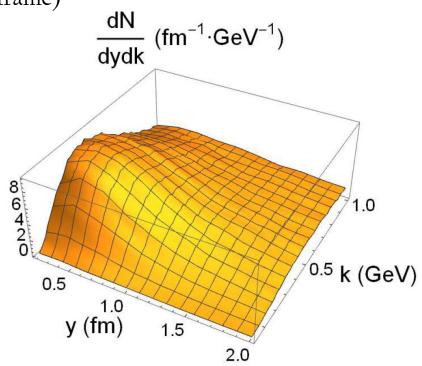
- We propose a hybrid hadronization model with two well-defined limits:
 - \square Dilute systems \rightarrow String fragmentation
 - \square Dense systems \rightarrow Quark recombination
- Extrapolate smoothly between successful vacuum phenomenology of string fragmentation and quark recombination in a thermal environment.
- Original motivation: in-medium effects for jet hadronization in a medium.
 - Hadron chemistry
 - □ Momentum diffusion
- Surprise: jets can be "dense" systems of partons
- QQ-potential:


Hybrid Hadronization

CCNU 2018

Outline Of The Model

- Start with initial parton system "ready" to hadronize
- Partons can start to hadronize at different times t.
- This example: perturbative parton showers evolved to a scale Q_0 .
- Decay gluons with remaining virtualities into quark-antiquark pairs.
- From wave functions of bound states calculate the probability that a given q-qbar pair (q-q-q triplet) forms a meson (baryon)
- Connect remaining remant partons with strings.


How Dense are Parton Showers?

■ Distance of quark-antiquark pairs in phase space is the deciding factor for recombination into mesons.

■ Distribution of pair distances in 100 GeV (PYTHIA 6) parton showers in phase space (in the pair center of mass frame)

- PYTHIA 6 jets: most of the jet is relatively dense in phase space.
 - ☐ Space-time structure reconstructed from formation times.
- Long tails exist (~ large z partons)
- Test for other jet Monte Carlos?

 Perturbative evolution should not lead to dilute showers, otherwise non-perturbative effects are already dominant.

[K. Han, R.J.F., C. M. Ko, Phys. Rev. C 93, 045207 (2016)]

Wigner function coalescence yield:

$$\frac{dN_M}{d^3\mathbf{p}_M} = g_M \int d^3\mathbf{x}_1 d^3\mathbf{p}_1 d^3\mathbf{x}_2 d^3\mathbf{p}_2 f_q(\mathbf{x}_1, \mathbf{p}_1) f_{\bar{q}}(\mathbf{x}_2, \mathbf{p}_2) \qquad \text{[RJF, V. Greco, P. Sorensen, Ann. Rev. Nucl. Part. Sci. 58, } \\ \times W_M(\mathbf{y}_1, \mathbf{k}_1) \delta^{(3)}(\mathbf{P}_M - \mathbf{p}_1 - \mathbf{p}_2) \,, \qquad (3) \qquad \qquad 177 \, (2008)]$$

$$\frac{dN_B}{d^3\mathbf{p}_B} = g_B \int d^3\mathbf{x}_1 d^3\mathbf{p}_1 d^3\mathbf{x}_2 d^3\mathbf{p}_2 d^3\mathbf{x}_3 d^3\mathbf{p}_3 f_{q_1}(\mathbf{x}_1, \mathbf{p}_1) \\ \times f_{q_2}(\mathbf{x}_2, \mathbf{p}_2) f_{q_3}(\mathbf{x}_3, \mathbf{p}_3) W_B(\mathbf{y}_1, \mathbf{k}_1; \mathbf{y}_2, \mathbf{k}_2) \\ \times \delta^{(3)}(\mathbf{P}_B - \mathbf{p}_1 - \mathbf{p}_2 - \mathbf{p}_3) \,, \qquad (4)$$

Can be turned into a formula for recombination probability (here meson)

$$\overline{W}_{M}(\mathbf{y}, \mathbf{k}) = \int d^{3}\mathbf{x}_{1}' d^{3}\mathbf{k}_{1}' d^{3}\mathbf{x}_{2}' d^{3}\mathbf{k}_{2}'$$

$$\times W_{q}(\mathbf{x}_{1}', \mathbf{k}_{1}') W_{\bar{q}}(\mathbf{x}_{2}', \mathbf{k}_{2}') W_{M}(\mathbf{y}', \mathbf{k}').$$

- □ Evaluated at equal time in the pair or triplet rest frame.
- ☐ Throw dice to accept or reject a pair or triplet for recombination.

[K. Han, R.J.F., C. M. Ko, Phys. Rev. C 93, 045207 (2016)]

■ Bound state Wigner function derived from harmonic oscillator wave functions (L_n = Laguerre polynomials).

$$W_n(u) = 2(-1)^n L_n\left(\frac{4u}{\hbar\omega}\right) e^{-2u/\hbar\omega} \qquad u = \frac{\hbar\omega}{2} \left(\frac{x^2}{\sigma^2} + \sigma^2 k^2\right)$$

- For the probabilities to be positive definite, we need proper q, qbar Wigner functions: Introduce Husimi smearing by representing quarks by proper wave packets of width δ.
- For $\sigma^2 = 2\delta^2$ the result for the overlap of wave packets and Wigner function is extremely simple. The probability densities for the n-th excited states are

$$\overline{W}_{M,n}(\mathbf{y}, \mathbf{k}) = \frac{v^n}{n!} e^{-v} \qquad v = \frac{1}{2} \left(\frac{\mathbf{y}^2}{\sigma_M^2} + \mathbf{k}^2 \sigma_M^2 \right)$$

- The true shape and size of the input wave packets are not known.
- Hadron wave function widths fixed by measured charge radii.

[K. Han, R.J.F., C. M. Ko, Phys. Rev. C 93, 045207 (2016)]

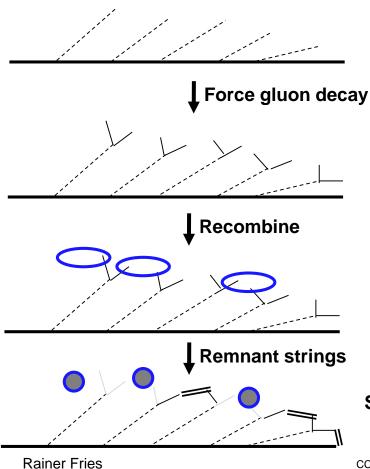
Rainer Fries


JETSCAPE Berkely 2018

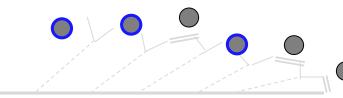
11

Remnant Strings

Check on recombination probability (100 GeV PYTHIA 6 vacuum jets)

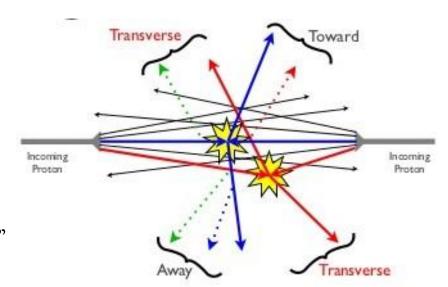


[K. Han, R.J.F., C. M. Ko, Phys. Rev. C 93, 045207 (2016)]


Remnant Strings

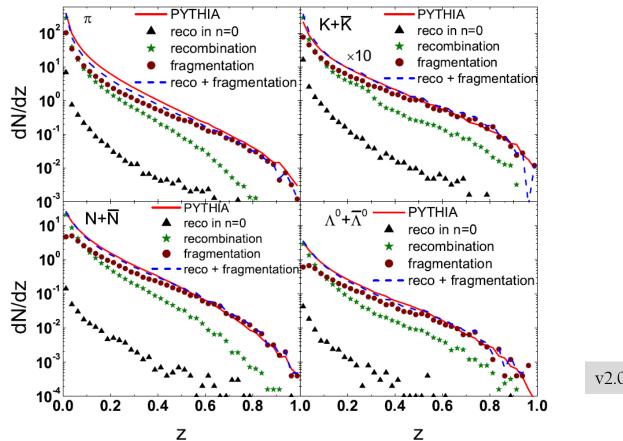
 Naturally there are remnant quarks and antiquarks which have not found a recombination partner.

- Why? No confinement in parton shower, quarks can get far away.
- In reality: colored object needs to stay connected.
- Return these partons to PYTHIA to connect them with remnant strings.



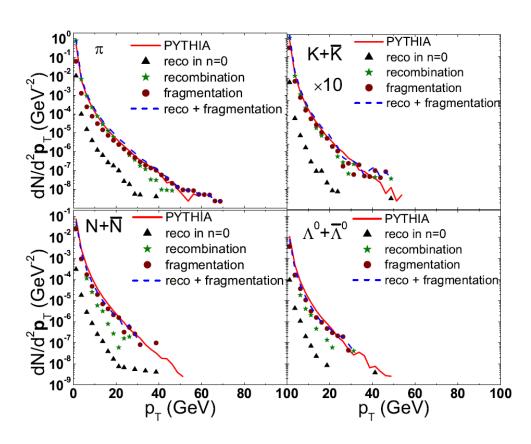
Underlying Events: p+p

- Original model: e+e- jets, simple strings!
- Full p+p event: many strings, junctions, diquarks, ...
 - \square New in v2.2
- Complexity requires instant "repair" of string objects that have lost partons to other hadronization channels.
- Many possible channels to consider:
- Start with well-defined string structure (e.g. PYTHIA), end with well-defined strings + hadrons: Strings → Strings' + hadrons



Results for Single Jet Showers

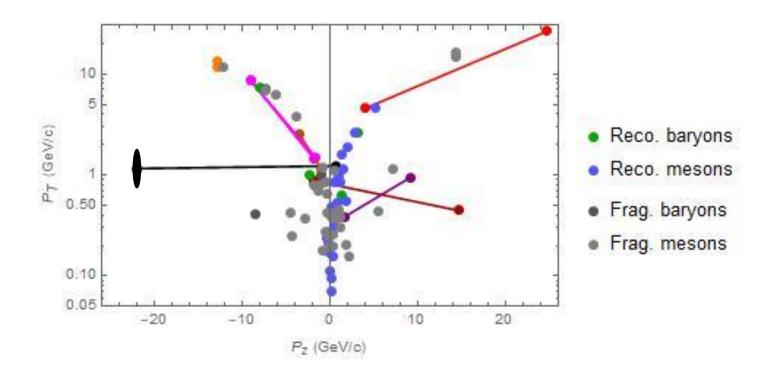
■ Longitudinal structure: dN/dz of stable particles compared to PYTHIA string fragmentation (e+e-).



v2.0; 100 GeV jets

Results (Vacuum)

■ Transverse structure: dN/d^2P_T of stable particles compared to PYTHIA string fragmentation (e+e-).

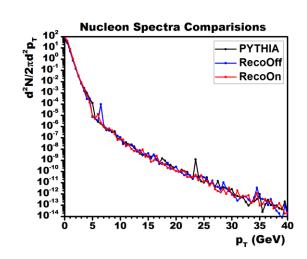


- Generally good agreement with pure string fragmentation.
- No precision tuning to data.

v2.0; 100 GeV jets

String-Recombination Interplay

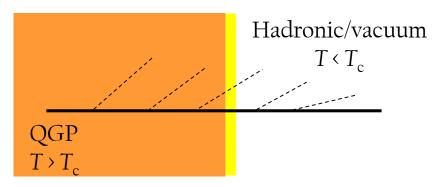

■ 200 GeV p+p event from PYTHIA, ~50 GeV momentum transfer.

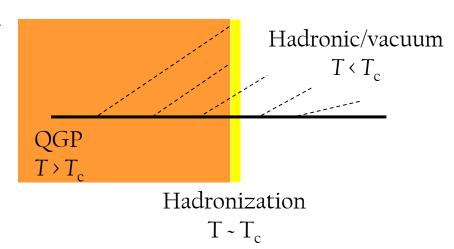


v2.2 Full p+p Events

- 3-way test:
 - □ PYTHIA
 - ☐ Hybrid hadronization reco=off
 - ☐ Hybrid hadronization full
- PYTHIA ~ benchmark.

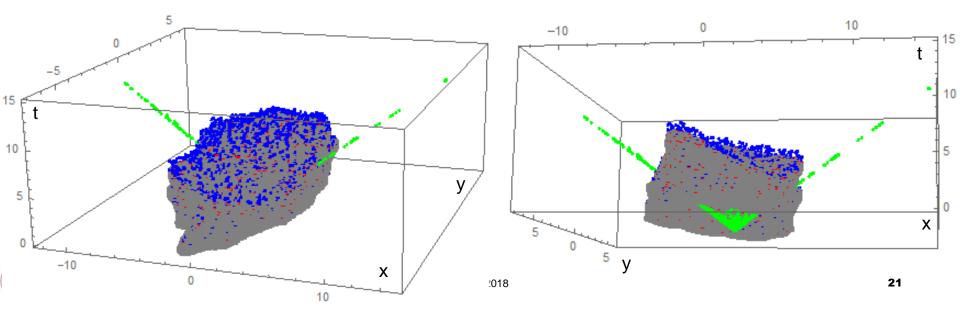
No tuning. Need more testing: jet observables, etc ...


Adding Thermal Partons

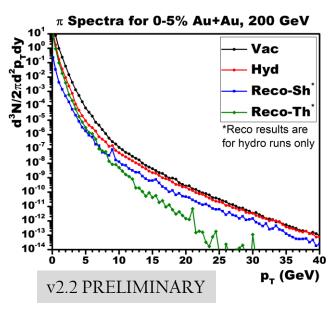


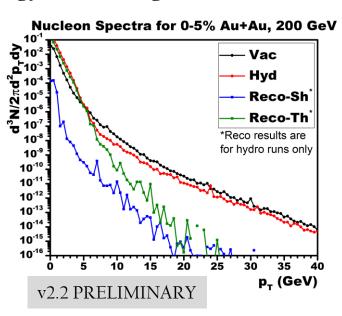
Adding a Medium

- The space-time picture is complicated and it matters.
- All relevant partons have to be on the surface of the QGP or outside the QGP to hadronize.
- Propagate all shower partons to the hadronization hypersurface, or make them part of the medium.


Hadronization $T \sim T_c$

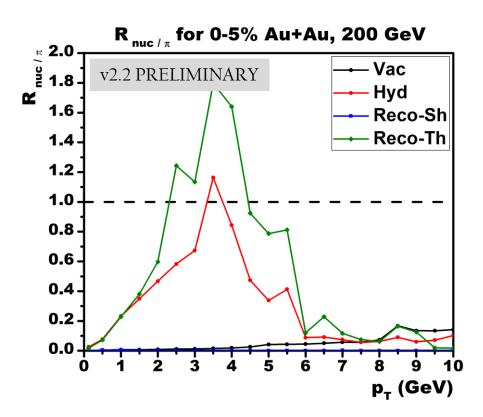
Adding a Medium


- iEBE (Ohio State) event-by-event hydro with sampled thermal partons on the T= T_c hypersurface.
- Plots: 500 PYTHIA 6 (vacuum!) showers emerging from the center embedded into an iEBE event
 - □ blue = sampled thermal partons; green = shower; grey = hypersurface



NEW: v2.2 Results With Medium

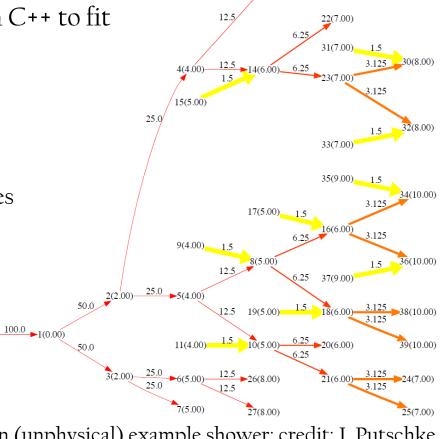
- v2.2: in-medium MATTER showers in hydro background; partons propagated to the $T=T_c$ hypersurface if Q_0 is reached inside QGP.
- Central Au+Au collisions at RHIC energy. No tuning to data.


- Basic phenomenology: internal shower recombination is largely replaced by shower-thermal recombination at low to intermediate p_T .
- Shower-thermal recombination much more important for baryons!

Rainer Fries

NEW: v2.2 Results With Medium

- Enhanced baryon/meson ratio as expected from quark recombintion.
- No thermal partons here!
- No tuning to data but very promising


Outlook

Latest official version: v2.2 (FORTRAN)

Coming soon: v3.0: Rewrote code in C++ to fit into JETSCAPE framework

Work with PYTHIA 8

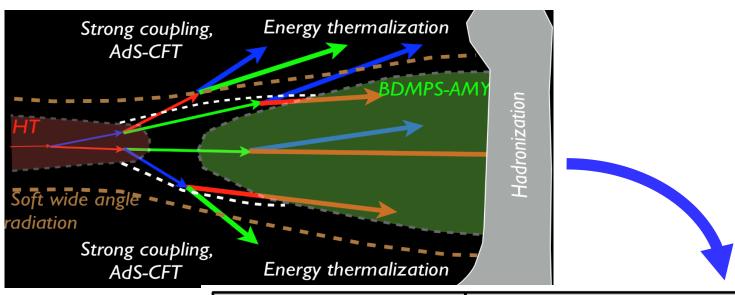
- Add physics along the way
 - Correct treatment of isospin
 - Better implementation of resonances
 - Infrastructure to track color flow.
- Will be included in JETSCAPE 1.xx

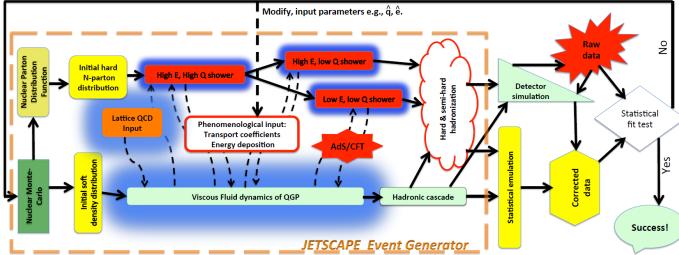
1.5 12(6.00)

An (unphysical) example shower; credit: J. Putschke **CCNU 2018**

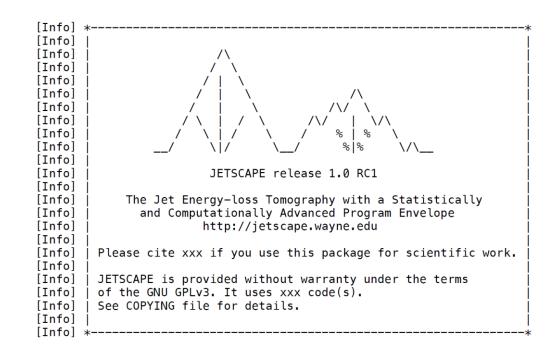
JETSCAPE

[Credit for slides: Kolja Kauder, Jorn Putschke]



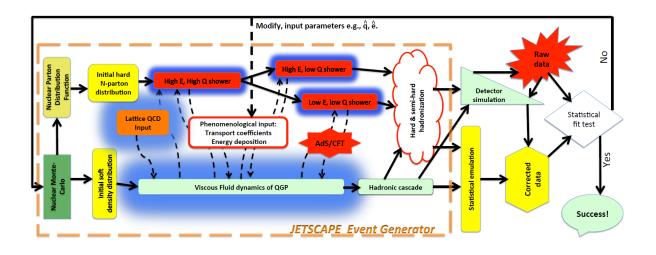

- JETSCAPE = The next generation event generator framework for high energy nuclear physics, NSF funded since 2016.
 - ☐ Theorist, experimentalist, statisticians, computer scientists
- Key issue: different Monte Carlo codes exist for different aspects of nuclear collisions. Make them work smoothly together in one framework
 - □ Modular, flexible, extensible
 - □ Use out of the box or add/replace code.
 - □ Also provide a default setup with the best science we can currently provide.

JETSCAPE Framework



v

JETSCAPE v1.0


- The first version of the code is now available for testing and community feedback.
- www.github.com/JETSCAPE/JETSCAPE

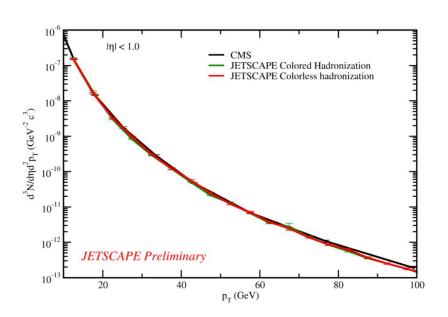
JETSCAPE v1.0

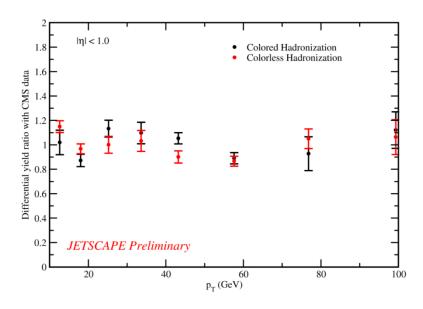
Modules included in this release (optional modules)

- √ Trento (2+1)
- √ Free Streaming
- ✓ MUSIC (2+1, 3+1), external reader, brick, Gubser,
- ✓ Pythia8, parton gun
- ✓ MATTER, Martini, AdS/CFT, LBT
- √ Cooper Frye
- ✓ Pythia8 string fragmentation
- ✓ Custom and HepMC output

JETSCAPE Beyond v1.0

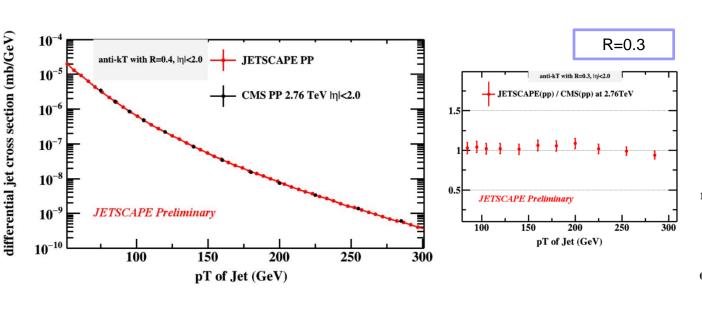
- Statistical analysis tools
- Hybrid hadronization
- SMASH
- Jet feedback into the medium (concurrent running?)
- Speed up through GPU support
- [Your enery loss model here]

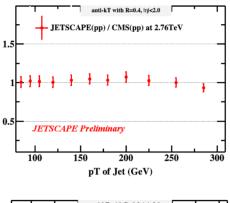


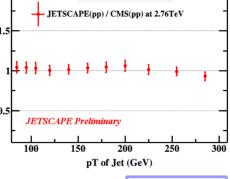

- \blacksquare p+p jet and high p_T results for tuning and validation
- Baseline for A+A!
- p+p tests
 - □ PYTHIA 8 hard QCD process (+ISR +MPI)
 - ☐ MATTER final state shower
 - ☐ String fragmentation (again PYTHIA 8)
- Charged hadrons, 2.76 TeV compared to LHC results

CCNU 2018

■ Charged hadrons, 2.76 TeV compared to CMS results

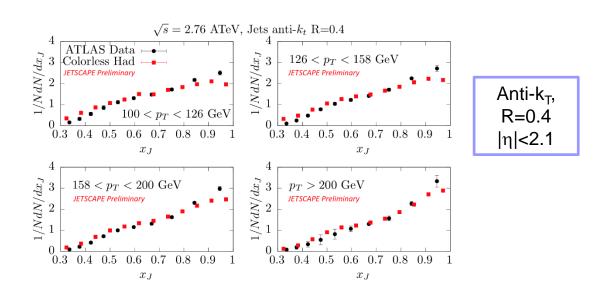


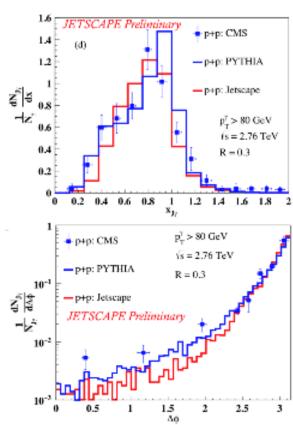

• Good agreement with data.



■ Jets, 2.76 TeV compared to CMS results

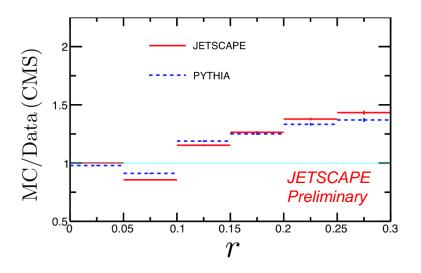
R=0.4

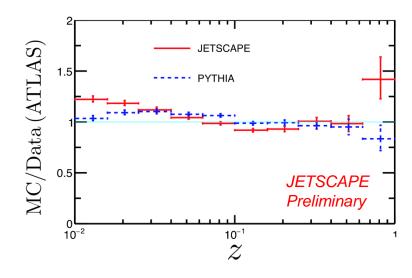



R=0.2

• Again good agreement with data.

• x_j -distribution, 2.76 TeV, in dijets and photon-jet systems, compared to ATLAS and CMS results

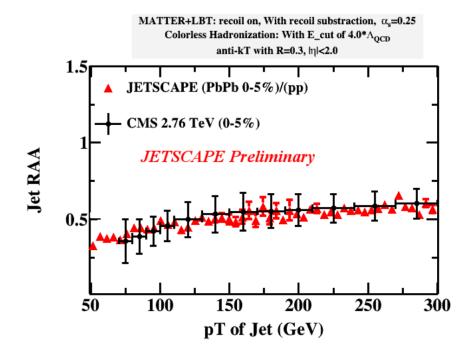

Good agreement with data.



м

First Science Results

■ Jet shape and jet fragmentation function, 2.76 TeV, systems, compared to


■ Competitive with PYTHIA.

■ Just a small selection of p+p results. Systematic study on the way, stay tuned.

■ A+A hors'd oevre:

Much more to come!

Summary

- We have developed an event-by-event hybrid hadronization module for jet Monte Carlos.
- Quark recombination including resonances, supplemented by string fragmentation.
- Medium effects by sampling hydro event-by-event.
- Current v2.2: hadronize full events in p+p; add thermal medium
- New v3.0 under development for the JETSCAPE framework.
- JETSCAPE 1.0 is available.

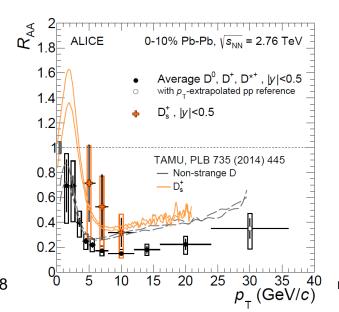
Backup

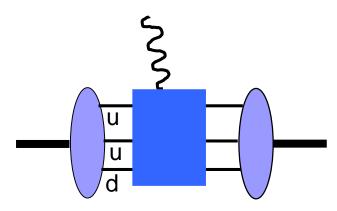
Recombination Step

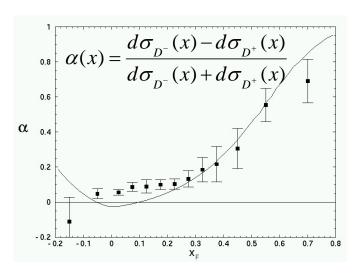
Parameters (harmonic oscillator WF case)

TABLE I. Table of measured charge radii R (from Ref. [21]), widths σ_M (and σ_B), and statistical factor g for all hadrons used in this calculation.

Hadron	R [fm]	σ_M (and σ_B) [fm]
π	0.67	1.09
ρ	_	1.09
K	0.56	1.10
K^*	_	1.10
N	0.88	1.24
Δ	_	1.24
Λ	_	1.15

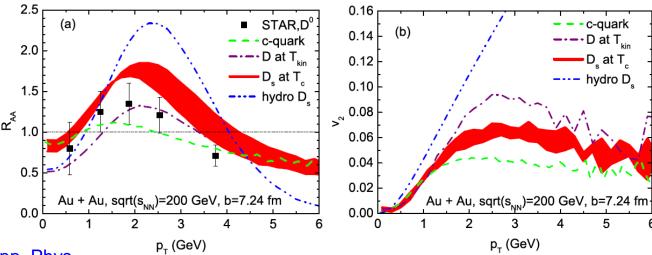



Quark Recombination

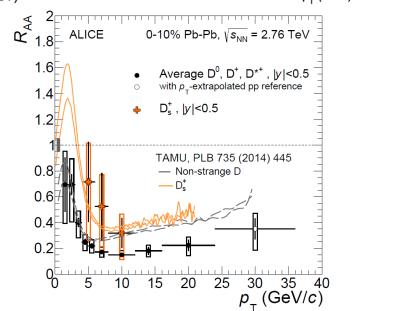

Exclusive processes: recombination of all beam partons:

$$\psi \sim \langle 0 | u_{\alpha} u_{\beta} d_{\gamma} | P \rangle$$

- Leading particle effect: recombination of produced partons with beam partons
- Charm-strange correlations in heavy ion collisions: strangeness enhancement seen in D_s .



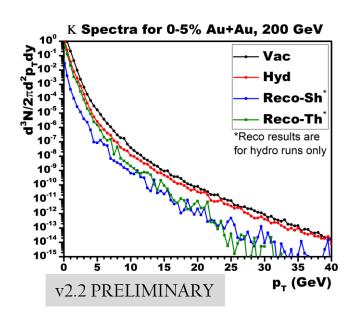
The D_s as a Signature

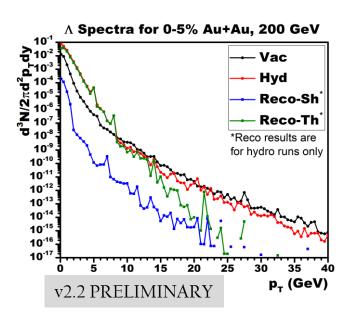

RHIC:

[M. He, RJF and R. Rapp, Phys. Rev. Lett 110, 112301 (2013)]

LHC:

 D_s enhancement seen but not yet statistically significant





м

NEW: v2.2 Results With Medium

• v2.2: in-medium MATTER showers in hydro background; partons propagated to the $T=T_c$ hypersurface if Q0 is reached inside QGP.

