Jet physics overview in ALICE

Tatsuya Chujo

University of Tsukuba (for the ALICE collaboration)

Opportunities and Challenges with Jets at LHC and beyond, June 10-12, 2018, CCNU, Wuhan, China

Hard probes for QGP

Hard probes:

- originated hard scattering parton (large Q²),
 prior to QGP formation time (1/Q « 1 fm/c).
- well calibrated (pQCD), self generated probe
- jets: experienced the whole evolution of the system (strongly interacting with medium)

Access to the medium properties:

- dE/dx of partons (g, q (uds, c, b)) & L dep.)
- Medium response (large angle emission)
- Jet tomography by different probes & techniques.

Picture form Y. Tachibana (Heavy Ion Cafe 2017)

HF iet

Primary Vertex

Semileptonic bhadron

Jet in ALICE

- Jet reconstruction by tracking (TPC+ITS) + calorimetry (EMC)
- Go to low jet p_T and low constituent p_T (> 0.15 GeV) in large HI background
 - ✓ Detailed characterization of background fluctuations (JHEP 1203 (2012), 053
 - ✓ gamma and jet triggers by EMCal/DCal, PHOS for high p_T

Measurements:

- √ high p_T hadrons
- ✓ Inclusive jet
- √ jet + h correlations (soft hadron, w/ PID)
- √ gamma-jet correlations, c/b taged jets, jet-jet
- √ jet substructure

gamma, jet trigger in Run-2 Pb-Pb

Single hadrons @ high pt

Baseline: π⁰ spectra in pp from 0.9 - 8 TeV

- Identified neutral pions in pp, up to 40 GeV
- With increasing of energy (harder spectrum), deviation from NLO pQCD
- Better agreement by PYTHIA (LO + parton shower)

Suggested importance of FF and parton shower for spectra

- Well defined FF for an identified hadron, compared to inclusive charged particles
- Strong centrality dependence
- Similar R_{AA} for two energies

- Significantly reduced systematic uncertainties compared to Run 1
- Statistical uncertainty determined by pp baseline (update soon)
- Similar picture up to 50 GeV.
- No significant difference between 2.76 and 5 TeV.

Charged hadron: Xe-Xe @ 5.44 TeV

arXiv:1805.04399

- For systematic study of system size and geometry dependence, complementary for centrality dependence in Pb-Pb.
- pp baseline at $\sqrt{s} = 5.44 \text{ TeV}$
 - interpolation of the measured spectra at $\sqrt{s} = 5.02$ and 7 TeV.

arXiv:1805.04399

- Similar R_{AA} in the most central Xe-Xe collisions to that in 10-20% Pb-Pb collisions over the entire p_T range.
- Agreement of R_{AA} between 30-40% Xe-Xe and 40-50% Pb-Pb.

centrality	N_{part}
0-5% Xe-Xe	236 ± 2
10-20% Pb-Pb	263 ± 4
30-40% Xe-Xe	82.2 ± 3.9
40-50% Pb-Pb	86.3 ± 1.7

Testing Geometry: Xe-Xe vs. Pb-Pb

Heavy Flavor's RAA

- Unity in p-Pb.
- Ordering for intermediate p_T in Pb-Pb $\pi < D < D_s < \Lambda_c$
- Consistent with recombination (+strangeness enhancement)

Jet quenching in peripheral Pb-Pb?

In p-Pb high multiply events:

- long range correlations (ridge and v₂)
- mass ordering of v₂ for identified hadrons
- strangeness enhance enhancement.

But still no evidence for jet quenching

- System is too small to quench jet?

 $R_{AA} \approx 70\%$ in peripheral Pb-Pb

However, from N_{coll}, N_{part}, dN/dη:

 $70 - 80\% \text{ Pb-Pb} \approx 0 - 5\% \text{ p - Pb}$

 $80 - 90\% \text{ Pb-Pb} \approx 0 - 100\% \text{ p} - \text{Pb}$

No jet quenching in p-Pb: recoil jet

- Semi-inclusive recoil-jet distribution
- Jet recoiling against a trigger high p_T
 hadron
- To subtract uncorrelated combinations:

 Δ_{recoil} = high pT trigger (12-50 GeV) - low pT trigger (6-7 GeV/c)

Self normalized coincidence.

Divided central / peripheral: no significant modification ($\Delta E < 0.4 \text{ GeV}$)

Revisit peripheral Pb-Pb

- · RAA in fine multiply bins in Pb-Pb
- · Change of behavior for peripheral collisions: > 80% centrality -> "suppression"
- Explained by geometry, selection biases
 - √ Larger average b_{NN} leads to less MPI per binary NN in peripheral
 - √ nuclear density/geometry bias
- Reproduced by PYTHIA based model: geometry and event biases, no nuclear modifications

Inclusive jet spectra

Well described by POWHEG+Pythia8 prediction for both R=0.2, 0.4 (NLO pQCD + parton shower, hadronization)

RAA: charged vs. full jet

- Strong jet suppression in central Pb-Pb for both R=0.2 and 0.3
- · Charged vs. full jets are consistent.
- pp data at the same beam energy in ALICE been analyzed

Cross section ratio: (R=0.2) / (R=0.3)

- · Cross section ratio: sensitive to the jet radial profile
 - √ Decrease: More energy in R = 0.3 and/or less in R = 0.2
 - ✓ Increase: Collimation

- No significant difference with jets in vacuum (POWHEG+PYTHIA8)
- Small difference at low p_T in central collisions
 - → Hints for stronger broadening @ low p_T

- No significant difference between the vacuum (POWHEG+PYTHIA) and JEWEL.
- · JEWEL predictions agree with data.

Comparison with D⁰ tagged jets

D-meson tagged jets agree with pQCD predictions in pp ⇒ well understood baseline for Pb-Pb collisions.

Similar suppression found for D⁰-tagged jets as for D⁰-mesons.

Groomed jet

Mapping jet substructure: Groomed jet

- Iterative de-clustering
- Recluster found jet (e.g. with C/A) and unwind
- Each (sub)jet consists of 2 sub-jets

Lund diagram

- Phase space of all splittings
- Momentum fraction vs. opening angle
- Isolate different regions for medium effects

Grooming

- Impose phase space cuts to enhance regions of interest
- Soft drop: unwind, follow the largest pT until

$$z > z_{cut} \cdot (\Delta R)^{\beta}$$

Lund Diagram in real data (Pb-Pb, 2.76 TeV)

- · Lund diagram for first hard splitting
- Subtracted Pb-Pb jets and embedded PYTHIA jets

Hint for a depletion of large angle first-splittings in Pb-Pb

Groomed jet (zg distributions)

Extreme angular limits of collimated and large angle splittings

$\Delta R > 0.2$ (large angle)

Slight enhancement of collimated first-splittings.

suppression of large angle first (symmetric) splittings.

In large angle limit, no evidence for excess of low z splittings.

sensitive to coherence of energy loss

z_g: shared momentum fraction of the first groomed splitting

$$z_g = \frac{\min(p_{T,1}, p_{T,2})}{p_{T,1} + p_{T,2}},$$

Summary and outlook

Exploring differential picture of parton energy loss by jet at LHC

- RAA of hadrons: reaching at precision measurements.
- jet spectra: new data using the new high interaction rate data in Pb-Pb
 - a hit of stronger brooding at lower p_T, central Pb-Pb.
- Groomed jets:
 - Detailed picture of parton shower provided by Lund Plane
 - A tool to select substructures
 - Showed suppression of large angle splittings and slight enhancement of collinear splittings compared to embedded PYTHIA

Outlook

- Jet spectra →towards larger R and low jet p_T
- Recoil jets, tagged jets (c, b) →jet-h, h-jet correlations w/ trigger data
- Groomed jets and jet sub-structure
- Jet mass, Dijet-kT
- Di-jet, gamma-jet
- Di-jet + soft hadron (PID)

Harvest of jet physics in ALICE!

• . . .

Thank you!