PHOTON–TAGGED JET SUBSTRUCTURE IN PP AND PBPB COLLISIONS AT 5.02 TEV WITH CMS

Ran Bi
for the CMS Collaboration

Opportunities and Challenges with Jets at LHC and beyond
11 June 2018
Wuhan, China
ENERGY LOSS IN DIJET EVENTS

- Jet quenching is a characteristic feature of the QGP
 - Observed through measurements of jet energy loss in dijet systems
- Caveat: both jets are modified when passing through the medium
ENERGY LOSS IN PHOTON-JET EVENTS

- Photons, being colourless, do not interact with the medium
 - Clean tag of the initial energy
 - Better handle on the quark/gluon jet ratio
- Measurements with photon-jet and Z-jet events show clear evidence for in-medium energy loss
PHOTON-TAGGED JET SUBSTRUCTURE

- Where does the quenched jet energy go?
 - Jet substructure measurements can help answer this
ENERGY LOSS MECHANISMS

- Various models exist with different approaches to modelling the energy loss

Perturbative QCD
Weak coupling limit

- Collisonal energy loss
- Radiative energy loss

Holographic calculation
Strong coupling limit

- AdS/CFT “drag force”

JEWEL LBT SCET$_G$ Hybrid
ANALYSIS TECHNIQUE

- Reconstruct photons, tracks, jets
- Correlate selected photons with all jets (back-to-back with the photon) within the event (inclusive jet measurement)
- Subtract backgrounds
 - Underlying event
 - Neutral meson decays
- Smear jet resolutions/Correct for resolution effects
 - Necessary for proper comparison
BACKGROUND SUBTRACTION (EVENT MIXING)

- Tracks from the underlying event are uncorrelated with the photon
 - Estimate contribution of underlying event by embedding the photon into minimum bias (MB) events
 - Select MB events with similar event characteristics
 - Centrality, primary vertex position, event plane angle
Contributions from background tracks (UE) and background jets (fake jets) must be subtracted.
BACKGROUND SUBTRACTION (EVENT MIXING)

- Contributions from background tracks (UE) and background jets (fake jets) must be subtracted

\[\text{N RAW jets} - \text{N BKG jets} \]
BACKGROUND SUBTRACTION (NEUTRAL MESON DECAY)

- Photons produced from neutral meson decays mimic direct photons
 - Generally have wider shower shapes
 - Estimated and subtracted using a template fitting method
 - Signal template from simulation
 - Background template from data

![Graph showing CMS Preliminary results with PbPb Data, Signal, and Background]

Final result: $\frac{1}{\text{purity}} \times \text{Observable from all photon candidates} - \frac{1 - \text{purity}}{\text{purity}} \times \text{Observable from sideband photons}$
OBSERVABLES (JET FRAGMENTATION FUNCTION)

• Jet fragmentation function
 \[\xi_{\text{jet}} = \ln \frac{|p_{\text{jet}}|^2}{p_{\text{trk}} \cdot p_{\text{jet}}} \]
 - Distribution of jet momentum parallel to the jet axis
 - Sensitive to hadronisation
 - Can also be calculated with respect to photon momentum
 \[\xi_{\gamma} = \ln \frac{-|p_{\gamma}|^2}{p_{\text{trk}} \cdot p_{\gamma}} \]
 - Momentum conservation is valid only in transverse direction
RESULTS (JET FRAGMENTATION FUNCTION)

- Enhancement of low-pT particles, depletion of high-pT particles

\[\sqrt{s_{NN}} = 5.02 \text{ TeV} \]
\[p_T^{\text{jet}} > 1 \text{ GeV/c}, \text{ anti-}k_T \text{ jet } R = 0.3 \]
\[p_T^{\text{jet}} > 30 \text{ GeV/c}, |\eta| < 1.6 \]
\[p_T^{\gamma} > 60 \text{ GeV/c}, |\eta| < 1.44, \Delta \phi_n > \frac{7\pi}{8} \]
THEORY COMPARISON (JET FRAGMENTATION FUNCTION)

- Stronger modification for ξ_T^γ compared to ξ_{jet}
 - Jet energy quenched
- SCET$_G$/CoLBT-hydro describes trend in both observables
- Enhancement at large ξ (low-p_T particles) is underestimated in all models
OBSERVABLES (JET SHAPE)

- Distribution of jet energy in transverse direction with respect to jet axis
 - Complementary information to jet fragmentation function
 \[\rho(r) = \frac{1}{\delta r} \sum_{\text{trk} \in [0, r_f]} \sum_{\text{jets}} \left(\frac{p_{T}^{\text{trk}}}{p_{T}^{\text{jet}}} \right) \]

\[\text{CMS Preliminary} \]

- PbPb 4C4 μb$^{-1}$, pp 27.4 pb$^{-1}$
- $\sqrt{s_{NN}} = 5.02$ TeV
- $p_T > 60$ GeV/c, $|\eta| < 1.44$, $p_T^{\text{trk}} > 1$ GeV/c
- anti-k_T jet $R = 0.3$, $p_T^{\text{jet}} > 30$ GeV/c, $|\eta| < 1.6$, $\Delta\phi > 7\pi/8$
RESULTS (JET SHAPE)

• Comparison to inclusive jet shapes
 • No depletion at intermediate r
 • Increased quark/gluon ratio
 • Lower jet p_T threshold - jets lose more energy

• Comparison to theory models
 • SCET$_G$/LBT describes trend
SUMMARY

- Photon-tagged measurements constrain initial parton kinematics and flavour
- Photon-tagged jet fragmentation functions:
 - Depletion of high-p_T particles and excess of low-p_T particles within the jet
- Photon-tagged jet shapes:
 - Larger amount of jet energy found at larger radial distances from the jet axis