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Hadron collider parameters (pp)

parameter

(HL) LHC

collision energy cms [TeV] 100 27 14
dipole field [T] 16 16 8.3
circumference [km] 100 27 27
beam current [A] 0.5 1.12 (1.12) 0.58
bunch intensity [101] 1 (0.5) 2.2 (2.2) 1.15
bunch spacing [ns] 25 (12.5) 25 (12.5) 25
norm. emittance ye, , [um] 2.2 (1.1) 2.5 (1.25) (2.5) 3.75
IP 3"y [M] 1.1 0.3 0.25 (0.15) 0.55
luminosity/IP [1034 cm2s-1] 5 30 28 (5) 1
peak #events / bunch Xing 170 1000 (500) 800 (400) (135) 27
stored energy / beam [GJ] 8.4 1.4 (0.7) 0.36
SR power / beam [kW] 2400 100 (7.3) 3.6
transv. emit. damping time [h] 1.1 3.6 25.8
initial proton burn off time [h] 17.0 3.4 3.0 (15) 40

Goal: 30 (15) ab-1 during the 100 (27) TeV collider lifetime




SM Higgs: event rates at 100 TeV

24 X 2.1 X 4.0 X 3.3 X 9.0 X
109 109 108 108 108 107

180 170 100 110 530 390

Nioo = Ojo0Tev X 30 ab™
Ni4= Ol4Tev X 3 ab™
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H at large pr
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Light dots: 10° events/H final Zstate (1=e,u)
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Hierarchy of production channels changes at large pt(H):
® (O(ttH) > o(gg— H) above 800 GeV

® (O(VBF) > o(gg—H) above 1800 GeV
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H at large pt
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® Statistics in potentially visible final states out to several TeV



gg—>H—YY at large pT
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gg—H— UM at large pT
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Delphes-based projections  M.Selvaggi
All signal and background samples have been generated via the following chain (using the
FCCSW): http://fcc-physics-events.web.cern.ch/fcc-physics-events/L HEevents.ph
MG5aMC@NLO + Pythia8
LO (MLM) matched samples (up to 1/2/3 jets ) and global K-factor applied to
account for N23LO corrections
« full list of signal prod. modes simulated (ggH with finite m¢op)
Delphes-3.4.2 with baseline FCC-hh detector
Consider the following categories of uncertainties: 6 Sl
e Ostat = statistical g
® Oprod = production + luminosity systematics I Ocff
* Jeff (1) (pT) = object reconstruction (trigger+isolation =’
+identification) systematics |
e OB = 0, background (assume to have oo statistics from 1
control regions) !
pr|GeV]

Assume (un-)correlated uncertainties for (different) same
final state objects

Following scenarios are considered:
® Ostat — stat.only (l)
® Ostat, Oeff — stat. + eff. unc. (ll)
® Ostat, Oeff,dprod = 1% — stat. + eff. unc. + prod (lll)

100


http://fcc-physics-events.web.cern.ch/fcc-physics-events/LHEevents.php

Delphes-based projections  MSelvaggi

All signal and background samples have been generated via the following chain (using the
FCCSW): http://fcc-physics-events.web.cern.ch/fcc-physics-events/LHEevents.ph

MG5aMC@NLO + Pythia8
LO (MLM) matched samples (up to 1/2/3 jets ) and global K-factor applied to
account for N23LO corrections

« full list of signal prod. modes simulated (ggH with finite m¢op)

Delphes-3.4.2 with baseline FCC-hh detector

Consider the following categories of uncertainties: | | = IZ‘;amma
e Ostat = statistical |
L 6prod = production + luminosity systematics I Oecff

* Jeff (1) (pT) = object reconstruction (trigger+isolation <7
+identification) systematics
e OB = 0, background (assume to have oo statistics from 1

control regions) :

0 20 40 60 80 100

Assume (un-)correlated uncertainties for (different) same
final state objects

could be seen as syst in the
normalization of production*lumi wrt
standard candles such as pp—Z—ee

Following scenarios are considered:
® Ostat — stat.only (l)
® Ostat, Oeff = stat. + eff. unc. (ll)

® Ostat, Oefff Oprod = 1% P stat. + eff. unc. + prod (lll) ]
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Top Yukawa coupling from o(ttH)/o(ttZ) arXiv:1507.08169

-t

- H VS

t

t t
7 o+

P t

To the extent that the qgbar — tt Z/H contributions are subdominant:

- ldentical production dynamics:

o correlated QCD corrections, correlated scale dependence
o correlated Xs systematics

- mz~mH = almost identical kinematic boundaries:

o correlated PDF systematics

o correlated m¢op systematics For a given ycop, We expect O(ttH)/0(ttZ) to be

predicted with great precision 4


http://arxiv.org/abs/arXiv:1507.08169

At 100 TeV, gg—tt X is indeed dominant ....

NB:At lower pr values, gg fraction is slightly larger for ttZ than for ttH, since

mz<mgH
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Cross section ratio stability

o(ttH)[pb]

o(ttZ)[pb]

o(ttH)
o(ttZ)
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scale PDF
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Cross section ratio stability

n = o(ttH)
o(ttH)|pb] o(ttZ) pb] o7
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Production kinematics ratio stability scale PDF
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BR(H—inv) in H+X production at large pt(H)

Constrain bg pt spectrum from Z—VV to the % level using
NNLO QCD/EW to relate to measured Z—ee,W and Y spectra
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Table 1.2: Target precision for the parameters relative to the measurement of various Higgs couplings,

the Higgs self-coupling A, Higgs branching ratios B and ratios thereof. Notice that lagrangian couplings
have a precision that is typically half that of what is shown here, since all rates and branching ratios

depend quadratically on the couplings.

Observable Parameter | Precision (stat) Precision (stat+syst)
p=o(H) x B(H— pu) Spaf 0.5% 0.9%
p=o(H) x B(H — vy) Spef 0.1% 1%
p=o(H) x B(H — 4u) Spef 0.2% 1.6%

i = o(ttH) x B(H — bb) S/ 1 19 thd
n=o(HH) x B(H — vy)B(H — bb) SA/A 3.5% 5.0%
R=B(H — up)/B(H — 4u) ‘R/R 0.6% 1.3%

R = B(H — vy)/B(H — 2e2u) ‘R/R 0.17% 0.8%

R = B(H — vy)/B(H — 2u) ‘R/R 0.6% 1.4%

B(H — invisible) B©95%CL 1x107° 2.5 x 1071

Study for B(H—Zy) in progress

19
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Study for B(H—Zy) in progress
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first probe of the Higgs potential
beyond the 2-point function

Table 1.2: Target precision for the parameters relative to the measurement of various Higgs couplings,

the Higgs self-coupling A, Higgs branching ratios B and ratios thereof. Notice that lagrangian couplings
have a precision that is typically half that of what is shown here, since all rates and branching ratios

depend quadratically on the couplings.

Observable Parameter | Precision (stat) Precision (stat+syst)
u=o(H) x B(H — pu) Spaf 0.5% 0.9%
p=o(H) x B(H = vy) Spe/ 1 0.1% 1%
p=o(H) x B(H — 4u) Spef 0.2% 1.6%

i = o(ttH) x B(H — bb) S/ 1% e
u=o(HH)x B(H —vy)B(H = bb) |  8A/A 3.5%

R = B(H — pp)/B(H - 4y) SR/R 0.6% 3%

R = B(H — vv)/B(H — 22u) SR/R 0.17% 0.8

R = B(H — vv)/B(H — 2u) SR/R 0.6% 4;

B(H — invisible) B@95%CL | 1 x107*

Study for B(H—Zy) in progress

sensitive to possible
Higgs-to-DM decays
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P.Harris & K.Hahn
Impact on DM bounds

Corpogsgtitive with the best direct detection experiments

T D ) T T T T T E
&= a0 \\ng
G 10 '8 \
Bessmadl e -1
o

(H— inv.) < 0.0001

Taking optimistic bound

.
'..
-
...'.I.I
-
" L -

1 10 10° 10°
DM mass [GeV]

Higgs invisible of 10+ corresponds to g.,, from 10~ to 10~
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One should not underestimate the value of FCC-hh standalone
precise “ratios-of-BRs" measurements:

* independent of s, mp, mc, [inv Systematics

* sensitive to BSM effects that typically influence BRs in different

ways. Eg
BR(H—YY)/BR(H—ZZ¥)
loop-level tree-level
BR(H— Uu)/BR(H—ZZ*)
2nd gen’n Yukawa gauge coupling
BR(H—YY)/BR(H—ZY)

different EWV charges in the loops of the two procs

BR(H—inv)/BR(H—YY)

tree-level neutral loop-level charged N



High-Q? aspects

22



High-Q? aspects

® Higher statistics shifts the balance between systematic and
statistical uncertainties. It can be exploited to define different

signal regions, with better S/B, better systematics, pushing the
potential for better measurements beyond the “systematics

wall” of low-stat measurements.
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High-Q? aspects

® Higher statistics shifts the balance between systematic and
statistical uncertainties. It can be exploited to define different
signal regions, with better S/B, better systematics, pushing the
potential for better measurements beyond the “systematics
wall” of low-stat measurements.

® We often talk about “precise” Higgs measurements.VVhat we

actually aim at is “sensitive” tests of the Higgs properties,
where sensitive refers to the ability to reveal BSM behaviours.

® Sensitivity may not require extreme precision

® Going after “sensitivity”’, rather than just precision, opens
itself new opportunities ...

22



Higgs as a BSM probe: precision vs dynamic reach

L= LSM+— ZOH

O = | (f|L]i) |* = Osar [1 4+ O(u?/A?) + -]
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Higgs as a BSM probe: precision vs dynamic reach

L=Lsu+ 15 ZOH

O = | (f|L]i) |* = Osar [1 4+ O(u?/A?) + -]

For H decays, or inclusive production, p~O(v,mH)

2 TeV '~ .
50 ~ (%) ~ 6% ( i ) = precision probes large N\

e.g.00=1% = A ~ 2.5TeV
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Higgs as a BSM probe: precision vs dynamic reach

L=Lsu+ 15 ZOH

= | {(fILIi) [* = Osnr [1 + O(u?/A%) + - -]

For H decays, or inclusive production, p~O(v,mH)

2 TeV '~ .
50 ~ (%) ~ 6% ( i ) = precision probes large N\

e.g.00=1% = A ~ 2.5TeV

For H production off-shell or with large momentum transfer Q, u~O(Q)
O (Q)2 = kinematic reach probes large
T \A
N\ even if precision is low
e.g.00=15% at Q=1 TeV = A~2.5TeV
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SBR(H— WW*)

Examples

-
...
-
-~
-
-

<~ W
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SBR(H— WW*)

OBR(H—gg)

Examples

W
>W* & QM(WH)
e
or
H
/

-
...
-
-~
-
-

™~ Q=pr(H)
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Examples of deviations of the Higgs
pT spectrum from SM, in presence of
new particles in the ggH loop

(See also
Azatov and Paul arXiv:1309.5273v3)

d in percent level at LHC14

- — M,=600 GeV, sin® 0 = 0.1
— M,=1000 GeV, sin’ 6 = 0.1
200 — M;=2000 GeV, sir? 6= 0.1
- - M;=600 GeV, sin”0=0.4
-~ M,=1000 GeV, sin° 6 = 0.4
l - - M;=2000 GeV, sin’ 0 = 0.4

d (%)

100~

top partners T in the loop

Banfi Martin Sanz, arXiv:1308.4771

Table 3: The benchmark points shown in Fig. [7, We set tan 8 = 10, M4 = 500GeV,

was set to 125 GeV.

My = 1000GeV, p = 200GeV and all trilinear couplings to a common value A;. The

remaining sfermion masses were set to 1 TeV and the mass of the lightest C P-even Higgs

Point | m;, [GeV] | m;, [GeV] | A; [GeV] AW
P 171 440 490 | 0.0026
P 192 1224 1220 | 0.013
Ps 226 484 932 | 0.015
Py 226 484 0 0.18

100 200 300 400 500 600 700

pr™[GeV]

L7 top squarks in the loop o
S Pl g e
1.6 ____P2 ”"_’
K - = P3 ”_”"
[5F === Py .= ]
s 1.4F ]
175} L
)
P
2 1.3F ]
= [
S
1.2- -----
: -‘-“-’_5—" =
| ‘p_‘_,,..-—'
i Rl L
—::7.:-..--—:;‘_‘—--"- ------
1.0. _______ o

800

Grojean, Salvioni, Schlaffer, Weiler arXiv:
1312.3317
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http://arxiv.org/abs/1309.5273v3
http://arxiv.org/abs/arXiv:1312.3317
http://arxiv.org/abs/arXiv:1308.4771

VH prodution at large m(VH)

*
L3
3
.
*
-
-
.
3
3
-
3
3
3
*
3
.
-
.
‘e
.,

In presence of a higher-dim op
such as:

Lo = 2 (H'o" D! H) D"V,

-

g—% [fb/ 25 GeV]

dBsm(%)

See e.g.
Biekotter, Knochel, Kramer, Liu, Riva,
arXiv:1406.7320

Z boson pr (pp — HZ — bb¢+¢™)

10-2}

éaz _:+_
i :
—, ;
. SM(qq + g9) _—
B Cw = —cCyw = —0.004 ==
cw = 0.004
50 100 150 200 250 300
p%[GeV]

Mimasu, Sanz,Williams, arXiv:1512.02572v
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The 100 TeV extension of these studies is not available as

yet, but some result will hopefully appear in the FCC CDR
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precise BR measurements at FCC-ee and high-Q?
measurements at FCC-hh (eg ability to pin down origin of

deviations by testing complementary dim-6 operators)
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The 100 TeV extension of these studies is not available as
yet, but some result will hopefully appear in the FCC CDR

Of particular interest will be the exploration of the
complementarity between the information gained from
precise BR measurements at FCC-ee and high-Q?
measurements at FCC-hh (eg ability to pin down origin of

deviations by testing complementary dim-6 operators)

Further work to be done includes estimating the precision
targets for the total width, eg using off-shell production

27



MSSM Higgs @ 100 TeV

B bbHYA? = bbTT

- t _
I bbHY/A? —bbitt — EEE _,EEtTg’ - by I')_,
B t(t)HY/A —e(t)te >4
Z 5. 10. 20.
50. 50. ¢ N v i " )
40.
30.t
20. 20.}
Q. 10. 10. ¢
= oy
= g
5. «——30 ab!
2. 3 ab™!
1(') 5 1 2 5 10 20 . - . - \ .
' ' ' ' ' ' . 2 5. 10.
mA [TeV] 20 Tev my+ [TeV] i(b TeV

N. Craig, ]. Hajer, Y.-Y. Li, T. Liu, H. Zhang,  ]. Hajer,Y.-Y. Li, T. Liu, and |. F H. Shiu,

arXiv:1605.08744 arXiv:1504.07617 )8



The nature of the EW phase transition

| (h) =0 - (h) = h(T) Digoon’finuous (h) =0 - (R = A(T) Continuous

|

vih)

2" order

Ist order

| 2 1 . 1 . | . 1 2 1 2 L l L 1 L | L 1




The nature of the EW phase transition

(R =0 = (k) = h(T) Discontinuous (R =0 » (k) = A(T) Continuous
5 . At 5 S et i , : , : , : ,

|

vih)

Ist order

| i | " | i 1 " |

2" order

] " ] " ] L |

h h
Strong |°* order phase transition is required to induce and sustain the out of
equilibrium generation of a baryon asymmetry during EW symmetry breaking

Strong |t order phase transition = (Pc) >Tc
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The nature of the EW phase transition

(R =0 = (k) = h(T) Discontinuous (R =0 - (hy = h(T) Continuous
& ©
& 1<y
vih) p 0
0
(Pe)
| st order 2™ order
s ] . ] . 1 g ] " 1 . ] ) o | ‘
h h

Strong |°* order phase transition is required to induce and sustain the out of
equilibrium generation of a baryon asymmetry during EW symmetry breaking

Strong |t order phase transition = (Pc) >Tc

In the SM this requires mpy <= 80 GeV, else transition is a smooth crossover.

Since my = 125 GeV, new physics, coupling to the Higgs and effective at scales
O(TeV), must modify the Higgs potential to make this possible
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The nature of the EW phase transition

(R =0 = (k) = h(T) Discontinuous (R =0 - (hy = h(T) Continuous
A ©
< 1<y
vih) p 0
0
(Pe)
|st order 2" order
- | s | " ] " 1 4 | 4 | 1 0
h h

Strong |°* order phase transition is required to induce and sustain the out of
equilibrium generation of a baryon asymmetry during EW symmetry breaking

Strong |t order phase transition = (Pc) >Tc

In the SM this requires mpy <= 80 GeV, else transition is a smooth crossover.

Since my = 125 GeV, new physics, coupling to the Higgs and effective at scales
O(TeV), must modify the Higgs potential to make this possible

= Probe higher-order terms of the Higgs potential (selfcouplings)

= Probe the existence of other particles coupled to the Higgs -



15t Order EWPT has profound implications for cosmology

(Higgs) = 0

Primordial Matter
Black Holes

see LISA science paper: 1512.06239 @

Andrew Long @ FCC physics Workshop, Jan 2018
https://indico.cern.ch/event/618254

L — R



What will FCC tells us about the existence of extra
Higgs bosons enabling a 15* order EWPT?

ho — hih1  (bbyy + 471)

100 TeV, 30/ab ===
100 TeV, 3/ab ==

. 14 TeV, 3/ab mmm

400 500 600 700 800
mo (GeV)

Kotwal, No, Ramsey-Musolf, Winslow, arXiv:1605.06123
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http://arxiv.org/abs/arXiv:1605.06123

Minimal stealthy model for a strong EW phase transition:
the most challenging scenario for discovery

V() — —,u2|H|2 + )\|H|4 + Curtin, Meade, Yu, arXiv:1409.0005

. 2 AsS4

2 2 o2
AgelH
2S+HS||S+4 )

Unmixed SM+Singlet.

No exotic H decay, no H-S mixing,
no EWPOQ, ...

Two regions with strong EWPT

Only Higgs Portal signatures:
h*—SS direct production

Higgs cubic coupling H* >SS
0(Zh) deviation (> 0.6% @ TLEP)

0 '¥
\\\ |
Nonpgrturbative Ag to avoid |
- ‘ nfgative runaways (tee—level)
\

200 400 B0C 800 1000
m G

Successfull
=> Appearance of first ‘“‘no-lose” EWBG

. FCC-hh Hi FCC-ee 0(ZH)
arguments for classes of compelling AL measurement

. - self-coupling
scenarios of new physics
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Higgs physics at HE-LHC (27 TeV, 15 ab™')

Primary goals in the Higgs sector:
(a) sensitivity to the Higgs self-coupling
(b) reduce to the few percent level all major Higgs couplings

(c) improve the sensitivity to possible invisible Higgs decays

(d) measure the charm Yukawa coupling

3.7x107 | 4xI107 | 2.I1x10°
|3 |2 |3 23 |9

N27=0(27 TeV) * 15 ab™ N1s=0(14 TeV) * 3 ab™




* First results on Higgs selfcouplings measurement:

D. Gongalves, T. Han, E. Kling, T. Plehn, and M. Takeuchi, Higgs Pair Production at Future
Hadron Colliders: From Kinematics to Dynamics, arXiv:1802.04319 [hep-phl].

AAsm =1£0.3 at 95%CL (1£0.15 at 68%CL)

(compare to —0.2 < AM/Asm < 2.6 at HL-LHCQ)

F. Kling, T. Plehn, and P. Schichtel, Maximizing the significance in Higgs boson pair analyses,
Phys. Rev. D95 (2017) no. 3, 035026, arXiv:1607.07441 [hep-phl].

* For couplings like Hyy, HZy, HUW, Htt, ... , plan to repeat studies
presented at 100 TeV
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Final remarks

Higgs physics at 100 TeV is a different ball game wrt LHC

LHC prejudices about systematics (TH & exptl) must be
reassessed and the full power to probe physics beyond the SM is
still far from having been established

Most precise extraction of absolute BRs, couplings and width
from FCC-hh data will require FCC-ee input. But there is
immense sensitivity to BSM deviations in the broad spectrum of
FCC-hh Higgs measurements (BR ratios, pt spectra, high-Q?,
direct searches, ...)

27 TeV: 30% precision on the self-coupling starts touching an
interesting region. However, while a real assessment is still
pending, the limited increase in rate and kinematical/Q? reach
wrt LHC, point to a possibly minor “Higgs case” for HE-LHC, in
absence of other; yet unknown, physics drivers.
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