Higgs Properties @ Circular Lepton Colliders

- Outline
- Lepton colliders: Overview
- Muon circular Higgs factory at $\sqrt{ } \mathrm{s}=125 \mathrm{GeV}$
- Circular $\mathrm{e}^{+} \mathrm{e}^{-}$circular colliders at the EW scale : FCC-ee, CEPC, LEP3
- Access to the high energy frontier
- Summary and outlook

Generic references

- Physics case of FCC-ee, arxiv:1308.6176 + FCC CDR
- Higgs program at CEPC, presentation from Manqi Ruan at IAS (2017)
- Muon collider Higgs factory for Snowmass 2013, arxiv:1308.2143
- Physics case for the 250 GeV ILC, arxiv:1710.07621, 1708.08912
- Higgs physics at CLIC, arxiv:1608.07538

Lepton collider overview

- Six different lepton colliders cover the $240-380 \mathrm{GeV}$ range (some partially)

- Significant differences in luminosity, access to the energy frontier, infrastructure, ...

Lepton collider overview (cont'd)

- In numbers
(+) With $-80 \% /+30 \%$ polarization
(*) Infrastructure exists already

Collider (\#IPs)	Lumi ($10^{34} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$) at ...		Time (yrs) for ...	Length (km)	Energy frontier (TeV)
	240-250 GeV	$350-380 \mathrm{GeV}$	$10^{6} \mathrm{HZ}$ events		
ILC (1)	1.5	-	$20^{(+)}$	23	0.35-0.5 (ILC?)
CLIC (1)	-	1.5	$30^{(+)}$	11	3 (CLIC)
LEP_{3} (4)	4.4	-	10	$27^{(*)}$	27 (HE-LHC)
CEPC (2)	6.0	-	7	100	70 (SppC)
FCC-ee (2)	17.	3.4	2.5	100	100 (FCC-hh)
μ Coll (1-2)	0.15	0.20	200	0.6	20 (FCC- $\mu \mu$?)

- General observations
- Higgs width and coupling precision ultimately limited by the σ_{HZ} accuracy
- Circular $\mathrm{e}^{+} \mathrm{e}^{-}$colliders can get to 0.1% precision in a reasonable time
- Muons are leptons : muon colliders can do what $\mathrm{e}^{+} \mathrm{e}^{-}$colliders can do
- In much smaller rings (almost no synchrotron radiation because $\mathrm{m}_{\mu} \sim 200 \mathrm{~m}_{\mathrm{e}}$)
- But need much more time at low energy: 10 (100) times slower than linear (circular).

Muon collider: s channel production at $\sqrt{\mathrm{s}} \sim \mathrm{m}_{\mathrm{H}}$

- Muons are heavy: $m_{\mu} / m_{e} \sim 200$
- Large direct coupling to the Higgs boson: $\sigma\left(\mu^{+} \mu^{-} \rightarrow \mathrm{H}\right) \sim 40,000 \times \sigma\left(\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{H}\right) \sim 100 \sigma_{\mathrm{Hz}}$
- Much less synchrotron radiation, hence potentially superb energy definition
- Can/must reduce the beam energy spread from 0.1% to $0.004 \%\left(\delta \sqrt{s} \sim \Gamma_{H}\right)$
- Longitudinal ionization cooling further reduces luminosity: $2-8 \times 10^{31} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$

- $\sigma\left(\mu^{+} \mu^{-} \rightarrow \mathrm{H}\right) \sim 18 \mathrm{pb}$ (ISR often forgotten: 38 pb)
- 200-800 $\mathrm{pb}^{-1} / \mathrm{yr}$
- 3500-14000 Higgs / yr

> Reminder:
> $400,000 \mathrm{HZ} / \mathrm{yr}$ at FCC-ee
> $100,000 \mathrm{HZ} / \mathrm{yr}$ at LEP3
> $50,000 \mathrm{HZ} / \mathrm{yr}$ at ILC 250

Not quite there, even within a factor 10

Scan of the Higgs resonance (1)

- Resonant production

$$
\sigma\left(\mu^{+} \mu^{-} \rightarrow H \rightarrow X X\right)=\frac{4 \pi \Gamma_{H}^{2} B r\left(H \rightarrow \mu^{+} \mu^{-}\right) B r(H \rightarrow X X)}{\left(s-m_{H}^{2}\right)^{2}+\Gamma_{H}^{2} m_{H}^{2}}
$$

- Convoluted with
- Beam energy spectrum

Major background: $\mu^{+} \mu^{-} \rightarrow \mathrm{Z} / \gamma^{*} \rightarrow X X$

- Initial state radiation (ignored in most studies)
- The measurement of the lineshape in any XX final state gives access to
- The Higgs mass, m_{H}
- The Higgs width, Γ_{H}
- The product of the branching ratios $\mathrm{BR}(\mathrm{H} \rightarrow \mu \mu) \times \mathrm{BR}(\mathrm{H} \rightarrow \mathrm{XX})$
\Rightarrow And $\mathrm{BR}(\mathrm{H} \rightarrow \mu \mu)$ with the inclusive lineshape if $\mathrm{BR}(\mathrm{H} \rightarrow$ invis $)$ is neglected
- Note: only one IP in a very small ring ($\mathrm{R}=50 \mathrm{~m}$)

Scan of the Higgs resonance (2)

- First, need to find the resonance ($\Gamma_{H}=4.2 \mathrm{MeV} \sim \delta \sqrt{ } \mathrm{s}$)
- Today, m_{H} is known to $\pm 250 \mathrm{MeV}$ with $\mathrm{gg} \rightarrow \mathrm{H} \rightarrow \gamma \gamma$, ZZ at LHC
- Will improve to $\pm 100 \mathrm{MeV}$ with full stat
- Scan the $\sqrt{ }$ s region of interest ($\pm 300 \mathrm{MeV}$) in optimal bins of 4.2 MeV
- Count the number of bb and semi-leptonic WW events (see next slides)
- About $4 \mathrm{pb}^{-1} /$ point required for a 5σ significance
- Total luminosity needed for 5σ
- Up to 150 points in $\pm 300 \mathrm{MeV}$
- Up to $600 \mathrm{pb}^{-1}$
- $\sim 1.5 \mathrm{Yr}$ at $4 \times 10^{31} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$
- Used for commissioning
- Can also be shorter
- Either with some luck
- Or after an $\mathrm{e}^{+} \mathrm{e}^{-}$collider
- m_{H} known to $\mathbf{1 0 - 2 0 ~ M e V}$

Scan of the SM Higgs resonance (3)

- Then, proceed with a multi-point scan around the peak
- Example: 14 points with $70 \mathrm{pb}^{-1} /$ point around m_{H} (about one year at $8 \times 10^{31} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$)
- Count all events (except invisible decays of H or Z)

Scan of the SM Higgs resonance (4)

- Five points suffice to determine $\mathrm{m}_{\mathrm{H}^{\prime}} \Gamma_{\mathrm{H}^{\prime}} \mathrm{BR}_{\mu \mu} \mathrm{BR}_{\mathrm{XXI}}$ and background level
- $\mathrm{H} \rightarrow$ visible
$\mathrm{H} \rightarrow \mathrm{bb}$
$\mathrm{H} \rightarrow$ WW \rightarrow Ivqq
Total luminosity $4 \mathrm{fb}^{-1}$

Total luminosity $1 \mathrm{fb}^{-1}$

- Fit to $B W \otimes$ Gaussian + linear background, with perfect knowledge of $\sqrt{ } \mathrm{s}, \delta \sqrt{ } \mathrm{s}$, and L
- After 5 years of running at $8 \times 10^{31} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$ and 1 year at half luminosity

Obs.	$\mathrm{m}_{\mathrm{H}}(\mathrm{MeV})$	$\Gamma_{\mathrm{H}}(\mathrm{MeV})$	$\mathrm{BR}_{\mu \mu} \mathrm{BR}_{\mathrm{vis}}$	$\mathrm{BR}_{\mu \mu} \mathrm{BR}_{\mathrm{bb}}$	$\mathrm{BR}_{\mu \mu} \mathrm{BR}_{\mathrm{ww}}$	$\mathrm{BR}_{\mu \mu} \mathrm{BR}_{\tau \tau}$
Precision	0.1	0.25	4%	2.5%	3%	10%

- Note: $\Gamma_{\mathrm{H}}=4.2 \mathrm{MeV} \Rightarrow 0.25 \mathrm{MeV}$ precision corresponds to 6% relative.

Practical considerations

- The luminosity and bunch crossing frequency are such that
- Pileup won't be a problem : situation better than LHC / CLIC / FCC-hh
- The main detector background come from $\mu \rightarrow e v_{e} \nu_{\mu}$ decays
- $10^{9} e^{ \pm}$per turn : lots of photons and neutrons shielded by $10-15^{\circ}$ tungsten cones
- Much work to do : situation worse than $\mathrm{e}^{+} \mathrm{e}^{-}$colliders, but not than HL-LHC
- Background not included in the studies presented in these slides
- Luminosity measured with 1\% precision: low angle Mhamha $\mu \mu \rightarrow \mu \mu$?
- Measurement to be done through the aforementioned shielding
- Needs to be demonstrated
- Measurements of m_{H} and Γ_{H} requires excellent energy calibration
- Muon natural polarization and decay provide beam energy and beam energy spread
- With adequate precision (limited by $\mathrm{g}_{\mu}-2$) : see backup slides
- Initial state radiation reduces the signal by a factor 2
- ... and increases the background in turn (radiative return towards the Z)
- $\quad \mu^{+} \mu^{-} \rightarrow Z / \gamma^{*}$ is not always the dominant background
- e.g. $\mu^{+} \mu^{-} \rightarrow \gamma \gamma$ is 1000 times larger than $\mu^{+} \mu^{-} \rightarrow \mathrm{H} \rightarrow \gamma \gamma$
- Result of the coupling fit given together with that of $\mathrm{e}^{+} \mathrm{e}^{-}$colliders
- Only few couplings, need assumptions, 5% level precision to be expected (6% on Γ_{H})

Circular $\mathrm{e}^{+} \mathrm{e}^{-}$colliders: FCC-ee, CEPC, LEP3

- Basic measurements similar for all $\mathrm{e}^{+} \mathrm{e}^{-}$colliders
- Some differences in experimental conditions

- Measure $\sigma_{\mathrm{HZ}}\left(\propto \mathrm{g}_{\mathrm{HZ}}{ }^{2}\right)$ independently of H decay: absolute determination of g_{Hz}
- Measure $\sigma_{H Z} \times B R(H \rightarrow$ invisible $)$ and many exclusive decays $\sigma_{H Z} \times B R(H \rightarrow X X)$
- Infer Higgs width Γ_{H} from $\sigma_{\mathrm{HZ}} \times \mathrm{BR}(\mathrm{H} \rightarrow \mathrm{ZZ})\left(\propto \mathrm{g}_{\mathrm{HZ}}{ }^{4} / \Gamma_{\mathrm{H}}\right)$
- Fit couplings g_{HX} from $\mathrm{BR}(\mathrm{H} \rightarrow \mathrm{XX})$ and Γ_{H} in a model-independent manner
- $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{HZ}$ completed with WW fusion at $\sqrt{ } \mathrm{s}=350-365 \mathrm{GeV}$ at FCC-ee
- Improves all precisions, especially on g_{Hw} and Γ_{H}
- First glance at top Yukawa coupling λ_{t} and Higgs self coupling λ_{H} (next slides)

Typical measurement precision (FCC-ee)

- Detector performance similar at all colliders (SiD, CLIC, CLD, ...)
- Statistical accuracy expected to evolve like $1 / \sqrt{ } N$, typically \%-level or below for FCC-ee

$\sqrt{2}(\mathrm{~L})$	$240 \mathrm{GeV}\left(5 \mathrm{ab}^{-1}\right)$		$365 \mathrm{GeV}\left(1.5 \mathrm{ab}^{-1}\right)$	
$\mathrm{BR} \times \sigma(\%)$	HZ	$v v \mathrm{H}$	HZ	$v v \mathrm{H}$
$\mathrm{H} \rightarrow$ any	0.5		0.9	
$\mathrm{H} \rightarrow \mathrm{bb}$	0.3	3.1	0.5	0.9
$\mathrm{H} \rightarrow \mathrm{cc}$	2.2		6.5	10
$\mathrm{H} \rightarrow \mathrm{gg}$	1.9		3.5	4.5
$\mathrm{H} \rightarrow \mathrm{WW}$	1.2		2.6	3.0
$\mathrm{H} \rightarrow \mathrm{ZZ}$	4.4		12	10
$\mathrm{H} \rightarrow \tau \tau$	0.9		18	8
$\mathrm{H} \rightarrow \gamma \gamma$	9.0		40	22
$\mathrm{H} \rightarrow \mu \mu$	19		<0.6	
$H \rightarrow$ inv.	<0.3			

- Experimental uncertainties much smaller ~ few 10^{-4} (regular high-luminosity Z runs)

Result of the coupling (a.k.a. κ) fit

- Comparison ${ }^{(*)}$ with other lepton colliders at the EW scale (up to 380 GeV)

Collider	$\mu \mathrm{Coll}_{125}$	ILC_{250}	CLIC_{380}	$\mathrm{LEP}_{3}{ }_{240}$	CEPC_{250}	FCC-ee ${ }_{240}$	$\mathrm{FCC}^{\text {-ee }} 365$
Years	6	15	7	6	7	3	+4
Lumi (ab^{-1})	0.005	2	0.5	3	5	5	+1.5
$\delta \mathrm{m}_{\mathrm{H}}(\mathrm{MeV})$	0.1	14	110	10	5	7	6
$\delta \Gamma_{H} / \Gamma_{H}(\%)$	6.1	3.8	6.3	3.7	2.6	2.8	1.6
$\delta g_{\mathrm{Hb}} / \mathrm{g}_{\mathrm{Hb}}(\%)$	3.8	1.8	2.8	1.8	1.3	1.4	0.68
$\delta g_{\mathrm{Hw}} / \mathrm{g}_{\mathrm{HW}}(\%)$	3.9	1.7	1.3	1.7	1.2	1.3	0.47
$\delta g_{H \tau} / g_{H \tau}(\%)$	6.2	1.9	4.2	1.9	1.4	1.4	0.80
$\delta \mathrm{g}_{\mathrm{H} \mathrm{\gamma}} / \mathrm{g}_{\mathrm{H} \mathrm{\gamma}}(\%)$	n.a.	6.4	n.a.	6.1	4.7	4.7	3.8
$\delta g_{H \mu} / \mathrm{g}_{\mathrm{H} \mu}$ (\%)	3.6	13	n.a.	12	6.2	9.6	8.6
$\delta g_{\mathrm{Hz}} / \mathrm{g}_{\mathrm{Hz}}(\%)$	n.a.	0.35	0.80	0.32	0.25	0.25	0.22
$\delta \mathrm{g}_{\mathrm{Hc}} / \mathrm{g}_{\mathrm{Hc}}(\%)$	n.a.	2.3	6.8	2.3	1.8	1.8	1.2
$\delta g_{\mathrm{Hg}} / \mathrm{g}_{\mathrm{Hg}}$ (\%)	n.a.	2.2	3.8	2.1	1.4	1.7	1.0
$\mathrm{Br}_{\text {invis }}(\%)_{95 \% \mathrm{CL}}$	SM	< 0.3	< 0.6	< 0.5	< 0.15	<0.3	<0.25
$\mathrm{BR}_{\text {ExO }}(\%)_{95 \% \mathrm{CL}}$	SM	< 1.8	<3.0	< 1.6	< 1.2	<1.2	< 1.1

HL-LHC
25
3
100
50
8.2
3.5
6.5
3.6
5.0
3.5
SM
3.9
<3
SM

General considerations

- Despite common wisdom, Γ_{H} is not best measured with a muon collider
- It would take 15-20 more luminosity to get to the FCC-ee level
- Rubbia: use of parametric-resonance ionization cooling (PIC)?
Y. Derbenev et al
arxiv:1205.3476
- May bring a factor 5 on paper - full experimental demonstration mandatory
- A muon collider would allow to identify two almost degenerate Higgses at 125 GeV
- The κ fit is almost model-independent for $\mathrm{e}^{+} \mathrm{e}^{-}$colliders, but ...
- Assumes SM value for the Higgs self coupling λ_{H} (see next slides)
- Assumes pure scalar state, no mixing, no CP violation (could change efficiencies)
- Assumes that SM cross section predictions will significantly improve ($\times 5$)
- 15 years of ILC@250 lead to similar precision
- As 6 years of LEP3@240, at a ~ five times smaller cost
- As 2 years of FCC-ee@240 GeV
- The FCC-ee provides the best precision on all couplings (except $\mathrm{g}_{\mathrm{H} \mu}$)
- The FCC-ee improves model-dependent HL-LHC precisions by a factor 10
- The add'I FCC-ee run at $\sqrt{ } \mathrm{s}=365 \mathrm{GeV}$ significantly helps : $\delta \Gamma_{\mathrm{H}} / \Gamma_{\mathrm{H}} \sim 1.6 \%$
- CEPC and LEP3 precision limited by running only at $\mathbf{2 4 0 - 2 5 0} \mathrm{GeV}$
- Note: CLIC precision similarly limited by running only at 380 GeV
- Access to high energy frontier : see next slides

Additional value of FCC-ee (1)

- The FCC-ee operation model includes a short run ($0.2 \mathrm{ab}^{-1}$) at $\sqrt{ } \mathrm{s} \sim 350 \mathrm{GeV}$
- Eight-point scan, primarily to measure the top mass and width, but ...

- The strong coupling constant will be measured with precision at FCC-ee ($\delta \alpha_{5} \sim 0.0001$)
- From the ratio of hadronic to leptonic branching ratios of the Z and the W
- FCC-ee synergy between the Z pole, the WW threshold, and the top threshold
- Which in turn allows FCC-ee to infer the top Yukawa coupling λ_{t} with a $\sim 10 \%$ precision
- Current uncertainty from higher orders (N4LO) $\sim 10 \%$ a - will decrease in future

Additional value of FCC-ee (2)

- $\sqrt{ }$ s dependence of the "effective" g_{HZ} and g_{Hw} to the Higgs self-coupling
- Accessible from the high-precision runs at $\mathbf{2 4 0}$, (350), and 365 GeV
- Arising from Higgs-triangle and -loop diagrams

- Higgs self-coupling precision at FCC-ee : $\sim 40 \%$
- Improved to $\sim \mathbf{2 0} \%$ if g_{Hz} is fixed to its SM value
- Unique FCC-ee synergy between the runs at 240 and 365 GeV
- Calls for the highest luminosity (4IP's ? Longer runs if schedule allows?)

Additional value of FCC-ee (3)

- If schedule allows or calls for a prolongation of FCC-ee
- Few years at $\sqrt{ } \mathrm{s}=\mathbf{1 2 5 . 0 9} \mathrm{GeV}$ with high luminosity is an interesting addition
- For s -channel production $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{H}$ (a la muon collider, with 10^{4} higher lumi)

- FCC-ee monochromatization setups
- Default: $\delta \sqrt{ } \mathrm{s}=100 \mathrm{MeV}, 25 \mathrm{ab}^{-1} /$ year
- No visible resonance
- Option 1: $\delta \sqrt{ } \mathrm{s}=10 \mathrm{MeV}, 7 \mathrm{ab}^{-1} /$ year
- $\sigma\left(\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{H}\right) \sim 100 \mathrm{ab}$
- Option 2: $\delta \sqrt{ } \mathrm{s}=6 \mathrm{MeV}, 2 \mathrm{ab}^{-1} /$ year
- $\sigma\left(\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{H}\right) \sim 250 \mathrm{ab}$
- Backgrounds much larger than signal
- $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{q} \overline{\mathrm{q}}, \tau \tau, \mathrm{wW}{ }^{*}, \mathrm{ZZ}{ }^{*}, \gamma \gamma, \ldots$
- Expected signal significance of $\sim 0.4 \sigma$ / year in both option 1 and option 2
- Set a electron Yukawa coupling upper limit : $\mathrm{K}_{\mathrm{e}}<2.5$ @ 95\% C.L.
- Constrain CP violating Higgs-top couplings from EDM measurements
- Reaches SM sensitivity after five years
- FCC-ee unique opportunity to constrain first generation Yukawa's

The FCC-ee is much more than a Higgs factory

- Meet the recommendation from ESPP 2013
https://cds.cern.ch/record/1567258/
There is a strong scientific case for an electron-positron collider, complementary to the LHC, that can study the properties of the Higgs boson and other particles with unprecedented precision and whose energy can be upgraded.

- Ultimate precision @ FCC-ee :
- 100000 Z / second (!)
- 1 Z / second at LEP
- 10000 W / hour
- 20000 W in 5 years at LEP
- 1500 Higgs bosons / day
- 10 times more than ILC
- 1500 top quarks / day
... in each detector
- In a clean exp'tal environment:
- no pileup; beam backgrounds under control; E,p constraints
- The FCC-ee unique discovery potential is multiplied by the presence of the four heavy particles of the standard model in its energy range

FCC-ee: Luminosity goals and operation model

- The FCC-ee physics goals require at least
- $150 \mathrm{ab}^{-1}$ at and around the Z pole ($\sqrt{ } \mathrm{s} \sim 91.2 \mathrm{GeV}$)
- $10 \mathrm{ab}^{-1}$ at the WW threshold ($\sqrt{ } \mathrm{s} \sim 161 \mathrm{GeV}$)
- $5 \mathrm{ab}^{-1}$ at the HZ cross section maximum ($\sqrt{ } \mathrm{s} \sim 240 \mathrm{GeV}$)
- $0.2 \mathrm{ab}^{-1}$ at the top threshold ($\sqrt{ } \mathrm{s} \sim 350 \mathrm{GeV}$) and $1.5 \mathrm{ab}^{-1}$ above $(\sqrt{ } \mathrm{s} \sim 365 \mathrm{GeV})$

$$
\begin{gathered}
5 \times 10^{12} \mathrm{Z} \\
10^{8} \mathrm{WW} \\
10^{6} \mathrm{HZ} \\
10^{6} \mathrm{t} \overline{\mathrm{t}}
\end{gathered}
$$

- Operation model (with 10% add'l safety margin) with two IPs
- 200 scheduled physics days per year (7 months -13 days of MD / stops)
- Hübner factor ~ 0.75 (lower than achieved with KEKB top-up injection, ~0.8)
- Half the design luminosity in the first years of Z operation (~LEP1) and top operation
- Machine configuration between WPs changed during Winter shutdowns (3 months/year)

Working point	Z, years 1-2	Z, later	WW	$H Z$	tt threshold	365 GeV
Lumi/IP (10 ${ }^{34} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$)	100	200	31	7.5	0.85	1.5
Lumi/year (2 IP)	$26 \mathrm{ab}^{-1}$	$52 \mathrm{ab}^{-1}$	$8.1 \mathrm{ab}^{-1}$	$1.95 \mathrm{ab}^{-1}$	$0.22 \mathrm{ab}^{-1}$	$0.39 \mathrm{ab}^{-1}$
Physics goal	150		10	5	0.2	1.5
Run time (year)	2	2	1	3	1	4

- Total running time : 13 (+1) years (\sim LEP)

Patrick Janot

Higgs properties @ Circular Lepton Collid 1 June 2018

FCC-ee: Discovery potential in a nutshell

- EXPLORE the 10-100 TeV energy scale
- With precision measurements of the properties of the Z, W, Higgs, and top particles
- 20-50 fold improved precision on ALL electroweak observables (EWPO)
- $m_{z}, \Gamma_{z}, m_{w}, m_{\text {top }}, \sin ^{2} \theta_{w}{ }^{\text {eff }}, R_{b}, \alpha_{\text {QED }}\left(m_{z}\right), \alpha_{s}\left(m_{z}\right)$, top EW couplings ...
- 10 fold more precise Higgs couplings measurements
- Break model dependence with Γ_{H} accurate measurement
- DISCOVER that the Standard Model does not fit
- Then extra weakly-coupled and Higgs-coupled particles exist
- Understand the underlying physics through effects via loops
- DISCOVER a violation of flavour consē̄vation / universality
- e.g., with $\mathrm{B}^{0} \rightarrow \mathrm{~K}^{* 0} \boldsymbol{\tau}^{+} \tau^{-}$or $\mathrm{B}_{\mathrm{s}} \rightarrow \boldsymbol{\tau}^{+} \boldsymbol{\tau}^{-}$in $1 \mathbf{0}^{12}$ bb events
- DISCOVER dark matter as invisible decays of Higgs or Z
- DISCOVER very weakly coupled particles in the $5-100 \mathrm{GeV}$ mass range
- Such as right-handed neutrinos, dark photons, ...
- May help understand dark matter, universe baryon asymmetry, neutrino masses

Today, we do not know how nature will surprise us: other things may come up with FCC-ee

FCC-ee precision : Sensitivity to new physics

- Combining all FCC-ee EW measurements
- In the context of the SM ... and beyond

Requires 10 -fold improved theory calculations

- New physics: blue and red ellipses may not overlap
- Or even better, data may not fit to the SM

Sensitivity 10-100 TeV

- All ingredients are needed: $m_{z}, \Gamma_{z}, m_{w}, m_{\text {top }}, \sin ^{2} \theta_{w}{ }^{\text {eff }}, R_{b}, \alpha_{\text {OED }}\left(m_{z}\right), \alpha_{s}\left(m_{z}\right), g_{H X}, \ldots$

... and whose energy can be upgraded

- All EW-scale $\mathrm{e}^{+} \mathrm{e}^{-}$projects provide access to the high energy frontier
- Either using the same infrastructure (circular: pp) or extending it (linear: $\mathrm{e}^{+} \mathrm{e}^{-}$)
- Which in turn provides direct measurement of top Yukawa and Higgs self couplings

Collider \rightarrow Energy frontier (TeV)	$\delta \lambda_{t} / \lambda_{t}$	$\delta \lambda_{\mathrm{H}} / \lambda_{\mathrm{H}}$	arXiv:1506.05992
ILC $_{250} \rightarrow$ ILC : 0.5 (?)	$\mathrm{X} \rightarrow 6 \%$	$\mathrm{X} \rightarrow 27 \%$	
CLIC $_{380} \rightarrow$ CLIC : 1.4-3	15\% \rightarrow \% \%	$X \rightarrow 19 \%{ }^{(* *)}$	arXiv: 1608.07538
FCC-ee ${ }_{90-365} \rightarrow$ FCC-hh : 100	10\% $\rightarrow 0.4 \%{ }^{(*)}$	40\% \rightarrow 5\%	FCC week 2018

${ }^{(*)}$ LHC precision on λ_{t} today : $\pm 10 \%$, after HL-LHC : $\pm 4.2 \%$
${ }^{(* *)}$ Unpublished 10-16\% from Philip's slides
The SppC (70 TeV pp colliders in the CEPC tunnel) numbers are not available

- The 100 TeV energy frontier of FCC-hh significantly pays off
- FCC-hh is helped by the FCC-ee precision: ttZ couplings for λ_{τ}, Higgs BR's
- FCC-hh helps back FCC-ee model-independence (no assumption for λ_{H})

The FCC-ee complies best with the ESSP2013 statement on $\mathrm{e}^{+} \mathrm{e}^{-}$colliders

Towards FCC $-\mu \mu$? (1)

- Recently revived approach to muon collider : LEMMA
D. Kaplan, T. Hart, P. Allport arXiV:0707.1546
- MAP

share the same complex

Key Challenges \sim	EASIER AND CHEAPER DESIGN
Key $10{ }^{15} \mathrm{e}+/ \mathrm{sec}, 100 \mathrm{~kW}$ class target, NON distructive process in e+ ring R\&D	EASIB

Towards FCC- $\mu \mu$? (2)

- Recently revived approach to muon collider : LEMMA
- Produce low emittance muon beams with $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mu^{+} \mu^{-}$at production threshold
- The threshold e^{+}energy for $\mu^{+} \mu^{-}$production on a thin target (e^{-}) is ... 43.7 GeV !
- Can use the FCC-ee/LEP3 ${ }^{+}$ring / booster as internal accumulation and target ring
- Requires an e^{+}source at least 20 times more intense than FCC-ee / CLIC

Intense e^{+}source and polarized e^{-}target feasibility to be demonstrated

- All muons are produced with ~ the same energy, in the same direction
- No longitudinal muon cooling needed at high $\sqrt{ } s(\Delta \mathrm{E} / \mathrm{E} \sim 0.07 \%$ at $\sqrt{ } \mathrm{s}=6 \mathrm{TeV})$
- Unfortunately not better suited for a 125 GeV Higgs factory ($\Delta \mathrm{E} / \mathrm{E} \sim 3 \%$)

Would still require a three-order of magnitude longitudinal cooling

- Transverse emittance $500 \times$ smaller than with protons on target + cooling (MAP)
- Two orders of magnitude less muons needed for same luminosity as MAP

Lower background from $\mathrm{e}^{ \pm}$in the detector (from muon decays)
Lower radiation hazard from neutrino interactions at the surface

- MAP was limited to $\sqrt{ } s=4 \mathrm{TeV}$ to cope with regulations on CERN site

LEMMA could go to $\sqrt{ } \mathrm{s}>20 \mathrm{TeV}$ (in the FCC or LEP tunnel) within the same regulations

Additional Higgs bosons at FCC- $\mu \mu$

- Automatic mass scan with radiative returns in $\mu \mu$ collisions
N. Chakrabarty et al. PRD 91 (2015)015008
- Go to the highest energy first
- $\sqrt{ } \mathrm{s}=3,6$, or 20 TeV in LHC / FCC
- Select event with an energetic photon
- Recoil mass distribution :

- Can also do the same as CLIC at 3 TeV
- And much more at 6 or 20 TeV
- Then build the next muon collider
- At $\sqrt{ } s \sim m_{A, H}$ in the SPS
- Study H/A mixing, CP violation
- With H/A $\rightarrow \mathrm{tt} \rightarrow \pi^{+} \pi^{-} v_{\tau} \nu_{\tau}, \rho^{+} \rho^{-} v_{\tau} \nu_{\tau}$

Summary

- A muon circular collider at $\sqrt{ } \mathrm{s}=125 \mathrm{GeV}$ is a pretty Higgs factory
- But not necessarily the one we need - if we are after precision and new physics
- Circular $\mathrm{e}^{+} \mathrm{e}^{-}$colliders deliver largest luminosities at $\sqrt{\mathrm{s}}=\mathbf{2 4 0 - 2 5 0} \mathrm{GeV}$
- The FCC-ee delivers 10 times more luminosity at 240 GeV than the ILC250
- The FCC-ee benefits from the ability to run at and above the top pair threshold
- The Higgs width and coupling precision covers Higgs-coupled new physics up to 10-30 TeV
- Circular $\mathrm{e}^{+} \mathrm{e}^{-}$colliders are much more than a better Higgs factory
- The FCC-ee physics case is multiplied by the presence of the 4 heavy SM particles in its energy range. In a coherent programme of about 14 years:
- It measures $m_{z}, \Gamma_{z}, m_{w}, m_{\text {top }}, \sin ^{2} \theta_{w}$ eff, $R_{b}, \alpha_{\text {OED }}\left(m_{z}\right), \alpha_{s}\left(m_{z}\right)$, EW top couplings, \ldots, with unprecedented precision
- It covers weakly-coupled new physics up to $10-100 \mathrm{TeV}$
- It provides a unique direct discovery potential - with $5 \times 10^{12} Z$ decays, in particular
- Circular $\mathrm{e}^{+} \mathrm{e}^{-}$colliders pave the way towards the highest energy frontier
- The FCC tunnel can host a 100 TeV pp collider (FCC-hh), with many ee-hh synergies
- In particular for Higgs precision physics (see next talk)
- Muon circular colliders may be the best way to reach $\sqrt{ } \mathrm{s}>3 \mathrm{TeV}$ with leptons
- The FCC-ee ability to accelerate a very intense e^{+}beam could be the first step
- Much R\&D remain to be done in (cooling), e^{+}source, e^{-}target, and acceleration

A visionary strategy

PHYSICS WITH VERY HIGH ENERGY

$\mathrm{e}^{+} \mathrm{e}^{-}$COLLIDING BEAMS
L. Camilleri, D. Cundy, P. Darriulat, J. Ellis, J. Field, H. Fischer, E. Gabathuler, M.K. Gaillard, H. Hoffmann,
K. Johnsen, E. Keil, F. Palmonari, G. Preparata, B. Richter,
C. Rubbia, J. Steinberger, B. Wiik, W. Willis and K. Winter

ABSTRACT

CERN 76-18 8 November 1976

```
e+e- 1989-2000
```

pp 2009-2038

This report consists of a collection of documents produced by a Study Group on Large Electron-Positron Storage Rings (LEP). The reactions of
 Vol.I

- Did these people know that we would run HL-LHC in the same tunnel more than 60 years later ?

Let's not be shy !
A visionary strategy based on a 100 km tunnel would provide
the most natural, broadest, and most ambitious scientific future
for CERN and for fundamental physics,
for many years to come,
with FCC-ee, FCC-hh, and maybe even FCC- $-\mu \mu$.

An early realization of FCC-ee (2035?) will materialize the chances to get the FCC-hh as soon as technically/financially possible

Backup material

Muon Higgs factory bonus

- Is $\mathrm{H}(125)$ made of several quasi-degenerate Higgs bosons ?
- At LHC, the typical m_{H} resolution in the $\mathrm{H} \rightarrow \mathrm{ZZ}^{*} \rightarrow \mu \mu$ channel is $\sim 1 \mathrm{GeV}$

Similar at FCC-ee
(Recoil mass)

- Two quasi-degenerate Higgs bosons difficult to infer if $\Delta \mathrm{M}<$ few 100 MeV
- Would be a piece of cake at a muon collider
- Examples shown for
- $\Delta \mathrm{M}=10,15,20 \mathrm{MeV}$
- Destructive/constructive interference
- Similar coupling to muons and b quarks
- Lineshape sensitive to $\Delta \mathrm{M} \sim \mathrm{MeV}$
- If both Higgs bosons couple to μ and b/W

- Probably observable at FCC-ee via pair production with $\sqrt{ } \mathrm{s}>250 \mathrm{GeV}$ (to be studied)
- $e^{+} e^{-} \rightarrow h A$ present at tree level with large cross section (A pseudoscalar, $m_{A} \sim m_{h} \sim m_{H}$)
- [$\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow$ hH only at loop level with a few ab cross section (H scalar)]
A. Djouadi et al. PRD 54 (1996) 759
- A small mass difference is not measurable this way
... but the pair production proves the existence of two (three) states

Higgs mixing and CP studies (muon coll.)

- Unique CP (violation) and H / A mixing studies can start
- From $\mathrm{H}, \mathrm{A} \rightarrow \tau^{+} \tau^{-} \rightarrow \pi^{+} \pi^{-} \nu_{\tau} \bar{v}_{\tau}$

From $\mathrm{H}, \mathrm{A} \rightarrow \tau^{+} \tau^{-} \rightarrow \rho^{+} \rho^{-} v_{\tau} \nu_{\tau}$ with $\rho^{ \pm} \rightarrow \pi^{ \pm} \pi^{0}$

- From beam transverse polarization

Parallel spins: produces H Antiparallel spins: produces A

- No idea of whether it is feasible or not...

$$
\begin{aligned}
& \text { F. Palhen et al. } \\
& \text { JHEP 0808:030 } \\
& \text { JHEP 0801:017 }
\end{aligned}
$$

Higgs width at FCC-ee (2)

- Example: Model-independent measurement of σ_{HZ} and κ_{Z}
- The Higgs boson in HZ events is tagged by the presence of the $Z \rightarrow \mathrm{e}^{+} \mathrm{e}^{-}, \mu^{+} \mu^{-}$
- Select events with a lepton pair ($\mathrm{e}^{+} \mathrm{e}^{-}, \mu^{+} \mu^{-}$) with mass compatible with m_{z}
- No requirement on the Higgs decays: measure $\sigma_{\mathrm{HZ}} \times \mathrm{BR}\left(\mathrm{Z} \rightarrow \mathrm{e}^{+} \mathrm{e}^{-}, \mu^{+} \mu^{-}\right)$
- Apply total energy-momentum conservation to determine the "recoil mass"

$$
\Rightarrow m_{H}^{2}=s+m_{Z}^{2}-2 \sqrt{s}\left(p_{+}+p_{-}\right) \quad \text { Exercise ! }
$$

- Plot the recoil mass distribution - resolution proportional to momentum resolution

- Provides an absolute measurement of κ_{z} and set required detector performance

Backup: Higgs width at FCC-ee (3)

- Indirect determination of the total Higgs decay width
- From a counting of HZ events with $\mathrm{H} \rightarrow \mathrm{ZZ}$ at $\sqrt{ } \mathrm{s}=240 \mathrm{GeV}$
- Measure $\sigma_{\mathrm{HZ}} \times \mathrm{BR}(\mathrm{H} \rightarrow \mathrm{ZZ})$

Final state with three Z's Almost background free

- σ_{HZ} is proportional to $\mathrm{K}_{\mathrm{Z}}^{2}$

Measured with the $\mathrm{HI}^{++}{ }^{-}$final state (see slide 21)

- $\mathrm{BR}(\mathrm{H} \rightarrow \mathrm{ZZ})=\Gamma(\mathrm{H} \rightarrow \mathrm{ZZ}) / \Gamma_{\mathrm{H}}$ is proportionalto $\mathrm{K}_{\mathrm{Z}}^{2} / \Gamma_{\mathrm{H}}$
$\Rightarrow \sigma_{\mathrm{HZ}} \times \mathrm{BR}(\mathrm{H} \rightarrow \mathrm{ZZ})$ is proportional to $\kappa_{Z} / / \Gamma_{\mathrm{H}}$
- Infer the total width Γ_{H}

Backup: Higgs width at FCC-ee (4)

- Indirect determination of the total Higgs decay width (cont'd)
- From a counting $\mathrm{WW} \rightarrow \mathrm{H} \rightarrow \mathrm{b} \overline{\mathrm{b}}$ events at $350-500 \mathrm{GeV}$ in the $\mathrm{b} \overline{\mathrm{b}} v \bar{v}$ final state:

- Measure $\sigma(W W \rightarrow H \rightarrow b b)$
- Take the branching ratios into WW and bb from $\sigma_{H Z}$ and $\sigma_{H Z} \times B R(H \rightarrow W W, b b)$
- Infer the total width

$$
\Gamma_{H} \propto \sigma_{W W \rightarrow H} / \mathrm{BR}(H \rightarrow W W)=\sigma_{W W \rightarrow H \rightarrow b b} / \mathrm{BR}(H \rightarrow W W) \times \mathrm{BR}(H \rightarrow b b)
$$

Higgs boson production at muon colliders

- Muons are heavy, similar to protons
- Limited synchrotron radiation
- Can reach very high energy in small rings

Luminosity

- Similar to linear colliders for $\sqrt{ } s>1 \mathrm{TeV}$
- HHH coupling with similar precision
- (Also done at FCC-hh)

Energy

- Can go to higher energy
- Advantage for 2HDM (e.g., SUSY)
- Heavy Higgs with $\mu^{+} \mu^{-} \rightarrow H, A$
- $\sqrt{ } s \sim 6 \mathrm{TeV}$ possible in the SPS tunnel
- $\sqrt{ } \mathrm{s} \sim 20 \mathrm{TeV}$ possible in the LEP tunnel

Beam energy and beam-energy spread (1)

- Muons are naturally $\mathbf{1 0 0} \%$ polarized (from $\pi^{ \pm}$decays)
- It is hoped that $\boldsymbol{\sim} \mathbf{2 0} \%$ of this polarization can be kept in the collider ring
- Then, the spin precesses around B with a frequency v_{0}
- For $\mathrm{m}_{\mathrm{H}}=125 \mathrm{GeV}, \mathrm{v}_{0}=0.68967593$ (35)
- Without energy spread, P_{L} oscillates between -20% and $+20 \%$

$$
v_{0}=\frac{g_{\mu}-2}{2} \times \frac{E_{\mathrm{Beam}}}{m_{\mu}}
$$

- With energy spread, P_{L} gets diluted turn after turn

$$
P_{L}(T)=P_{0} \int_{0}^{\infty} \cos (2 \pi v T) S(v) \mathrm{d} v
$$

- $P_{L}(T)$ is the Fourier transform of $S(v)$
- For example, with a Gaussian energy spread

$$
P_{L}(T)=P_{0} \cos \left(2 \pi v_{0} T\right) \exp \left\{-\frac{1}{2}\left[2 \pi v_{0} T \frac{\delta E}{E}\right]^{2}\right\}
$$

- Experimentally, measure P_{L} at each turn T
- And deduce the complete beam energy spectrum by inverse Fourier transform
i.e., $\delta E / E$ for a Gaussian energy spread

Beam energy and beam-energy spread (2)

- Use decay electrons to measure $\mathrm{P}_{\mathrm{L}}(\mathrm{T})$
- Energy distribution depends on the muon helicity
- $N_{e}(E)$ / $N_{\text {tot }}$ oscillates according to P_{L}
- Count electrons in the first dipole:

- The amplitude gives P_{0}
- The frequency gives $v_{0}\left(E_{\text {Beam }}\right)$
- The damping gives $\delta \mathrm{E} / \mathrm{E}$

Turn number

Beam energy and beam-energy spread (3)

- Expected statistical accuracy of the method
- For $\mathrm{L}=2 \times 10^{31} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$ and $\delta E / E=3 \times 10^{-5}$, for each "fill" (i.e., 1000 turns)
- 10^{-7} on the beam energy (6 keV)

- $3 \cdot 10^{-7}$ on the beam energy spread $\delta \mathrm{E} / \mathrm{E}(1 \%)$
- Corresponds to a systematic uncertainty of 0.5% on $\sigma(\mu \mu \rightarrow H)$
- Corresponds to a systematic uncertainty of 50 keV on Γ_{H}
- 10^{-4} on the polarization value
- Negligible impact on $\sigma(\mu \mu \rightarrow H)$
- These uncertainties are appropriately smaller than the statistical precision
- On the Higgs mass (0.1 MeV)
- On the Higgs width (0.25 MeV)
- On the production cross section (4\%)

EDM and electron Yukawa coupling

- Electron EDM used to set constraint on CP violating top couplings
J. Brod, U. Haisch, J. Zupan arXiV:1310.1385

- Assumes SM value for the electron Yukawa couplings
- The FCC-ee constraint (upper limit of ~ 2) on κ_{e} takes all its importance

