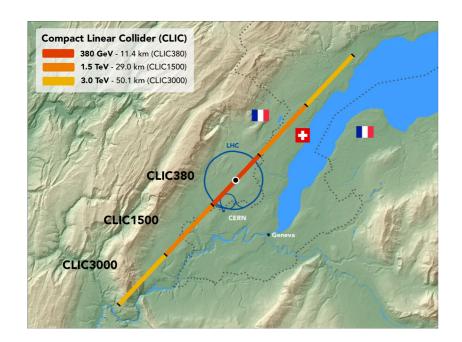
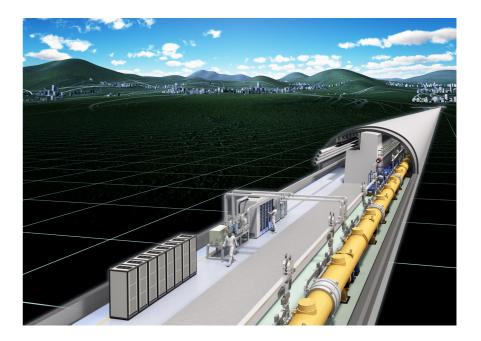
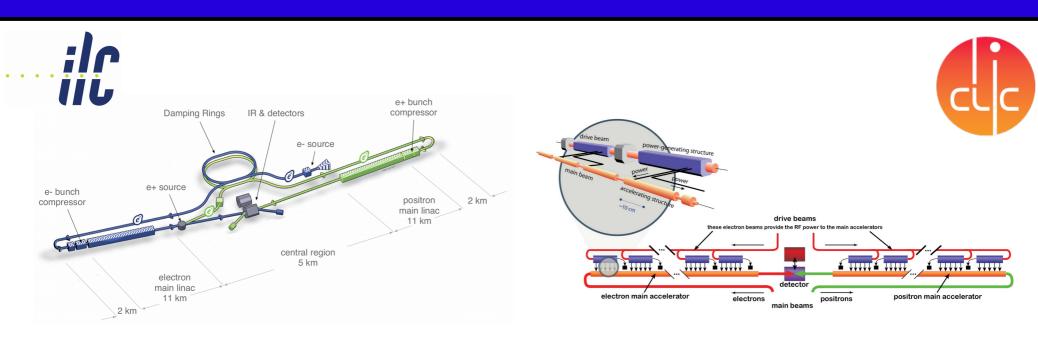
Higgs at linear colliders (ILC & CLIC)




Philipp Roloff (CERN/EP-LCD)

01/06/2018 EP/TH faculty meeting:

Measurement of Higgs properties at present and future colliders


01/06/2018

Philipp Roloff

Contents of this talk

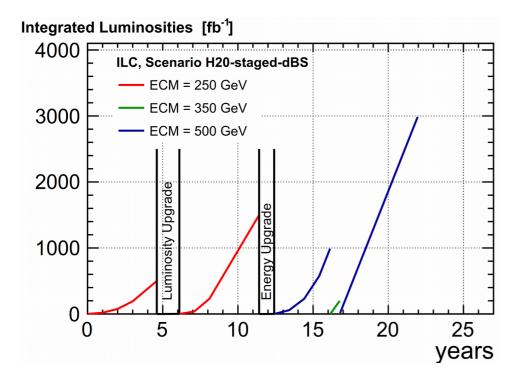
- Introduction
- Single Higgs production and analysis highlights
- Higgs couplings at ILC and CLIC
- Double Higgs production

Introduction: ILC and CLIC

International Linear Collider (ILC):

- Based on superconducting RF cavities
- Gradient: 32 MV/m
- Energy: 250 500 GeV
- $P(e^{-}) = \pm 80\%$, $P(e^{+}) = \pm 30\%$
- Length: 20 km (250 GeV), 31 km (500 GeV)

Compact Linear Collider (CLIC):


- Based on 2-beam acceleration scheme
- Operated at room temperature
- Gradient: 100 MV/m
- Energy: 380 GeV 3 TeV
- P(e⁻) = ±80%
- Length: 11 km (380 GeV), 50 km (3 TeV)

Linear colliders have the potential to profit from novel accelerator techniques

01/06/2018

Philipp Roloff

ILC staged implementation

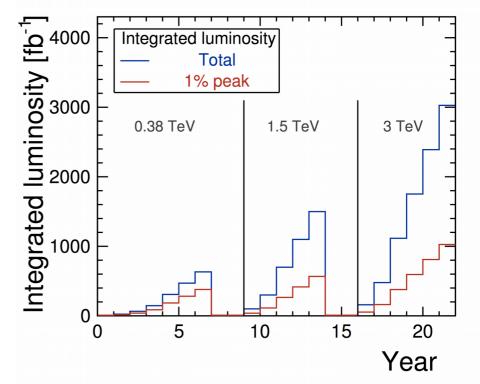
\sqrt{s} [GeV]:	L _{int} [fb⁻1]:
250	500 + 1500
350	200
500	4000

• 1 year = 1.6 x 10⁷ seconds

- The ILC is now proposed with a staged design, with the first stage at 250 GeV with a luminosity goal of 2 ab⁻¹
- Luminosity upgrade requires machine upgrades (double number of bunches per pulse)

arXiv:1710.07621 arXiv:1711.00568

Philipp Roloff


CLIC staged implementation

CLIC would be implemented in several energy stages

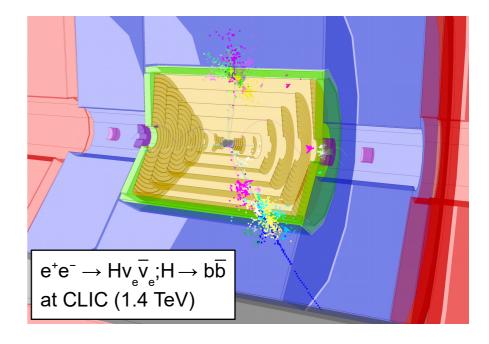
Baseline scenario:

Stage	\sqrt{s} (GeV)	\mathscr{L}_{int} (fb ⁻¹)
1	380	500
1	350	100
2	1500	1500
3	3000	3000

- Initial stage at 380 GeV optimised to cover Higgs and top measurements (including tt threshold scan)
- This strategy can be adapted to possible discoveries at the (HL-)LHC or the initial CLIC stage(s)

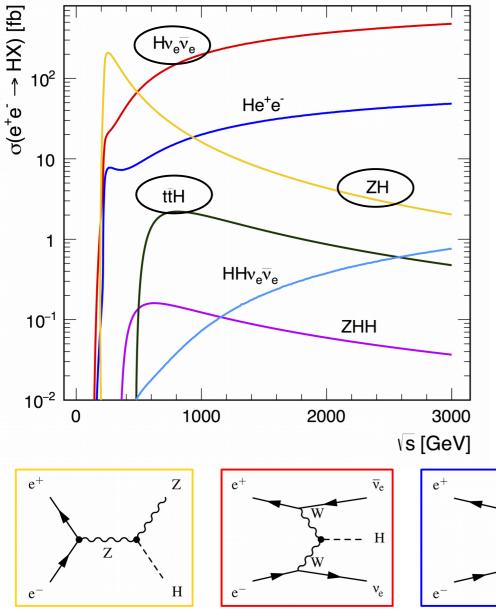
- 1 year = 1.08 x 10⁷ seconds (based on CERN experience)
- The physics performance studies assumed slightly different energies for the first two stages: $380 \rightarrow 350$ GeV, $1.5 \rightarrow 1.4$ TeV

01/06/2018


Higgs bosons in e⁺e⁻ collisions

Collider stage:	No. H produced:
ILC 250 GeV, 2 ab ⁻¹	500000
CLIC 350 GeV, 500 fb ⁻¹	100000
ILC 500 GeV, 4 ab ⁻¹	500000
CLIC 1.4 TeV, 1.5 ab⁻¹	430000
CLIC 3 TeV, 3 ab⁻¹	1400000

• No triggers

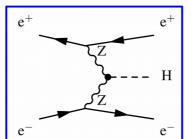

- \rightarrow all Higgs events usable
- Typical overall selection efficiencies: 20 60%

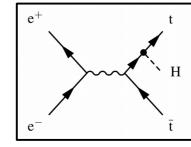
The projections shown in the following are based on realistic full detector simulations and include the impact of beam-beam effects

Philipp Roloff

Single Higgs production

Higgsstrahlung: $e^+e^- \rightarrow ZH$

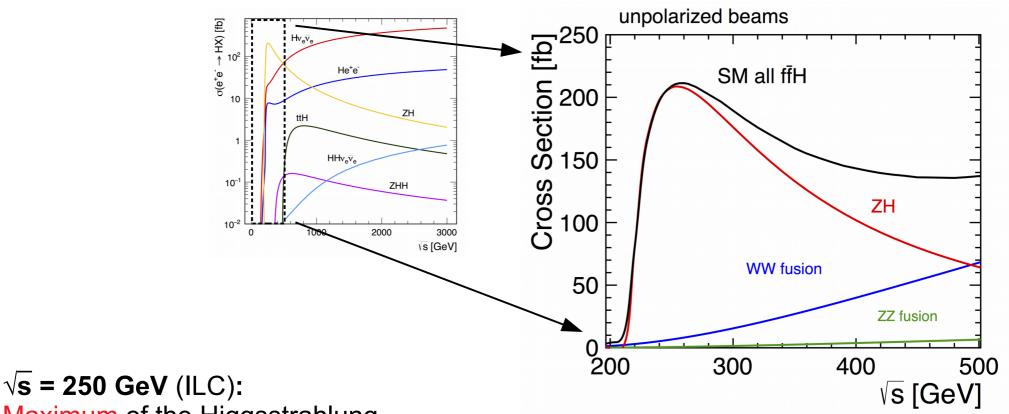

• $\sigma \sim 1/s$, dominant up to $\approx 500 \text{ GeV}$


WW fusion: $e^+e^- \rightarrow Hv_v v_e^-$

- $\sigma \sim \log(s)$, dominant above 500 GeV
- Large statistics at high energy

tt H production: $e^+e^- \rightarrow t\bar{t}H$

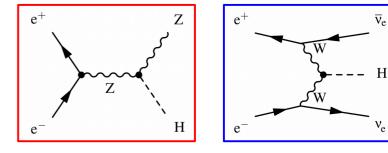
- Accessible ≥ 500 GeV, maximum ≈ 800 GeV
- Direct extraction of the top-Yukawa coupling



01/06/2018

Philipp Roloff

A closer look at \sqrt{s} < 500 GeV

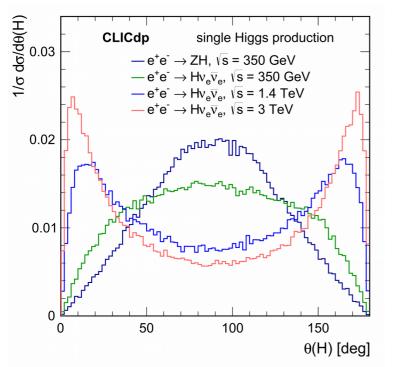

Maximum of the Higgsstrahlung cross section

 \sqrt{s} = 350/380 GeV (ILC & CLIC):

Also allows to access the

WW fusion process

 \rightarrow Additional information for combined analysis



01/06/2018

Philipp Roloff

Kinematics and polarisation

Higgs polar angle:

At a few hundred GeV: Higgs bosons produced mostly in the central detector

At high energy:

Good forward detector coverage required

Impact of polarisation:

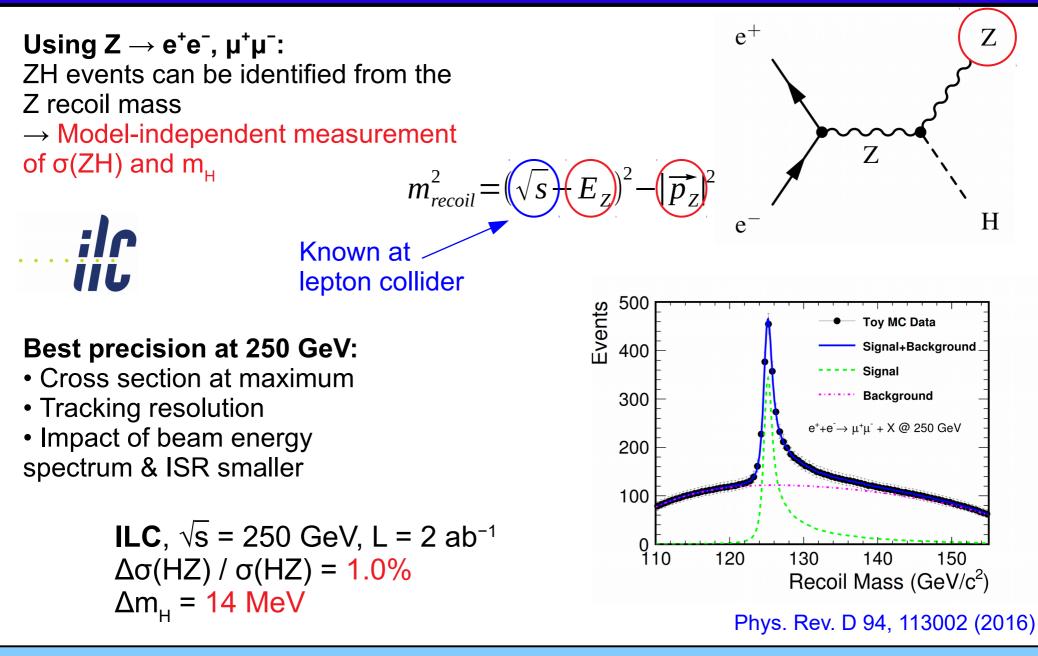
Polarisation		Scaling facto	r
$P(e^-): P(e^+)$	$e^+e^- \rightarrow ZH$	$e^+e^-\!\to H\nu_e\overline{\nu}_e$	$e^+e^- \rightarrow He^+e^-$
unpolarised	1.00	1.00	1.00
-80%:0%	1.12	1.80	1.12
-80%:+30%	1.40	2.34	1.17
-80%:-30%	0.83	1.26	1.07
+80%: 0%	0.88	0.20	0.88
+80%:+30%	0.69	0.26	0.92
+80%:-30%	1.08	0.14	0.84

Higgsstrahlung:

Polarisation dependence relatively small

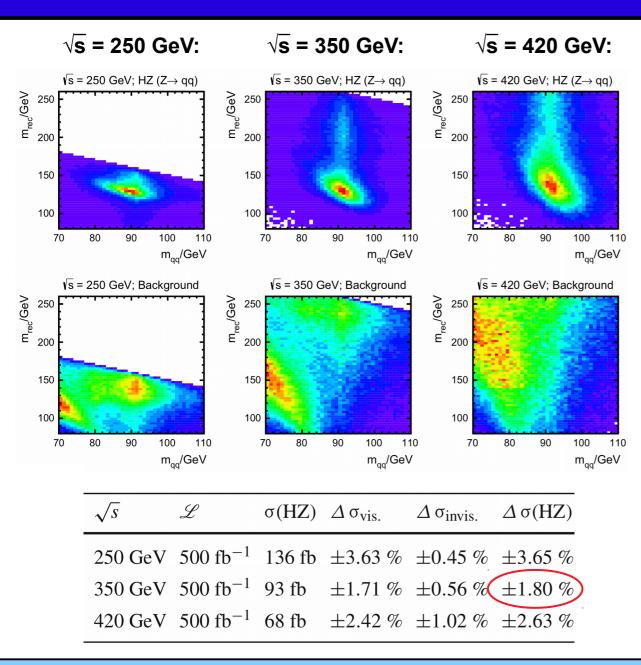
WW fusion:

Large enhancement in the -80% and -80%/+30% configurations


01/06/2018

Philipp Roloff

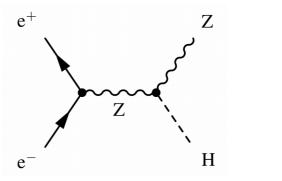
Analysis highlights


- Recoil method for Higgsstrahlung events
- Invisible Higgs decays
- CP properties in $H \rightarrow \tau^+ \tau^-$
- Hadronic Higgs decays: H→bb/cc/gg
- $e^+e^- \rightarrow t\bar{t}H$

Recoil method: $Z \rightarrow e^+e^-$ and $\mu^+\mu^-$

Philipp Roloff

Recoil method: $Z \rightarrow q\overline{q}$



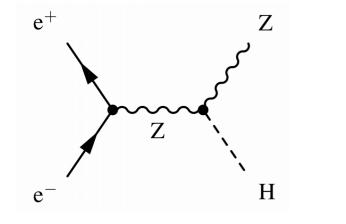
Hadronic Z decays provide the best sensitivity at 350 GeV

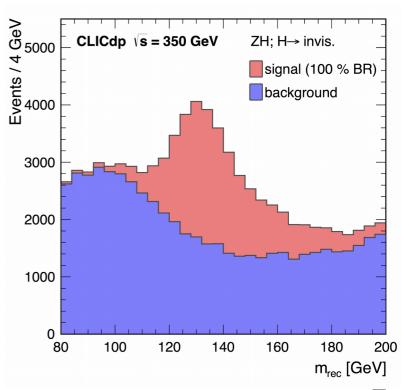
Optimisation study for the first CLIC stage (together with top physics):

• At 250 GeV the background is more signal-like

• At 420 GeV the cross section is lower and the jet energy resolution is worse

01/06/2018


Philipp Roloff


Invisible Higgs decays

The recoil mass technique also allows to identify invisible Higgs decays in a model-independent manner

CLIC, $\sqrt{s} = 350$ GeV, L = 500 fb⁻¹ BR(H \rightarrow inv.) < 0.97% at 90% CL

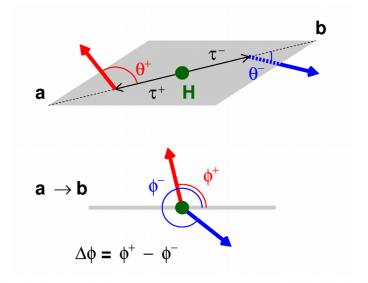
ILC, $\sqrt{s} = 250$ GeV, L = 250 fb⁻¹ BR(H \rightarrow inv.) < 0.86% (0.61%) at 95% CL for -80%/+30% (+80%/-30%) polarisation

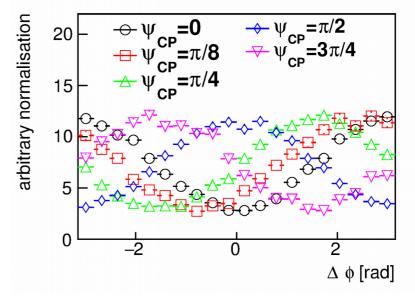
Example: Recoil mass from $Z \rightarrow q\bar{q}$ assuming all Higgs bosons decay invisibly

Eur. Phys. J. C 76, 72 (2016) arXiv:1708.08912

01/06/2018

Philipp Roloff


CP state of tau lepton pairs from H $\rightarrow \tau^{+}\tau^{-}$


$$-ig_{\tau\tau H}(\cos\psi_{CP}+i\sin\psi_{CP}\gamma_{5})$$

ψ_{CP} = 0: Standard Model ψ_{CP} = π/2: Purely CP-odd coupling

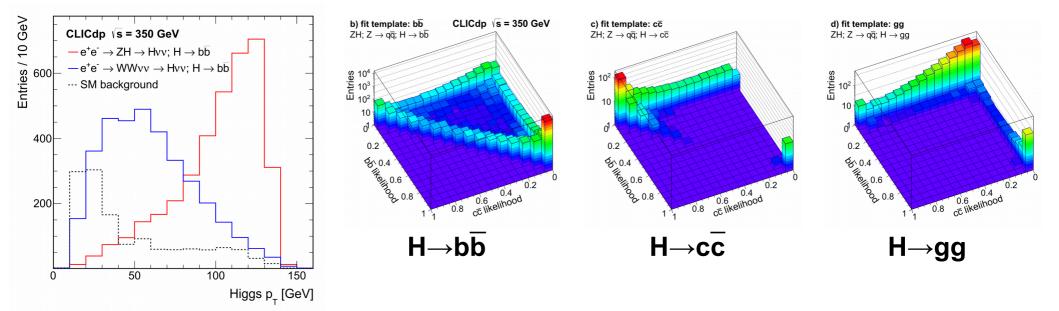
Using
$$e^+e^- \rightarrow ZH$$
; $H \rightarrow \tau^+\tau^-$;
 $\tau^{\pm} \rightarrow \pi^{\pm}v$ and $\tau^{\pm} \rightarrow \pi^{\pm}\pi^0v$

ILC, $\sqrt{s} = 250$ GeV, L = 2 ab⁻¹ $\Delta \psi_{CP}$ / ψ_{CP} = 75 mrad (or 4.3°)

arXiv:1804.01241

01/06/2018

$H \rightarrow b\overline{b}/c\overline{c}/gg$ at $\sqrt{s} = 350 \text{ GeV}$

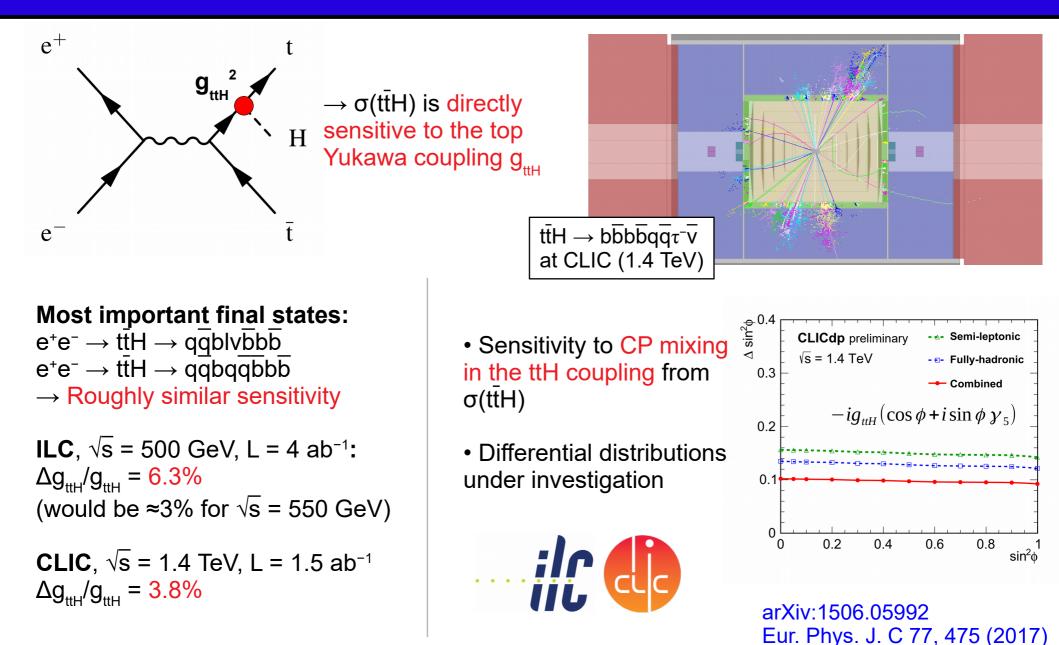

Simultaneous extraction of:

- Three decay modes: bb/cc/gg
 → precise flavour tagging
- Two production modes:
- ZH and WW fusion
- \rightarrow Higgs p_T spectrum

cL	С

CLIC,
$$\sqrt{s}$$
 = 350 GeV, L = 500 fb⁻¹

Decey	Statistical uncertainty						
Decay	Higgsstrahlung	WW-fusion					
$H \to b \overline{b}$	0.86%	1.9 %					
$H \to c \overline{c}$	14 %	26 %					
$H \to gg$	6.1 %	10 %					



Eur. Phys. J. C 77, 475 (2017)

01/06/2018

Philipp Roloff

Top Yukawa coupling

01/06/2018

Philipp Roloff

Higgs couplings at ILC and CLIC

Overview: CLIC projections

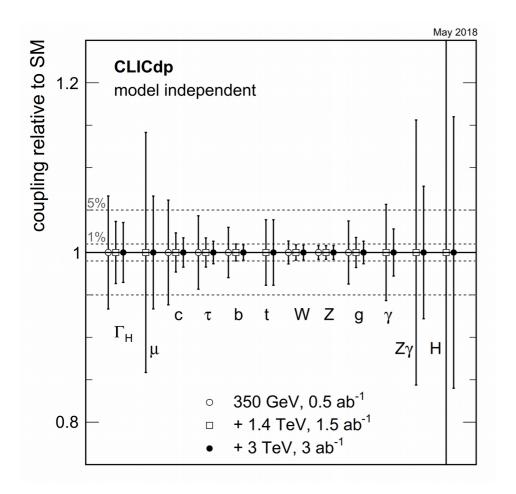
\sqrt{s} = 350 GeV:

			Statistical precision
Channel	Measurement	Observable	$\frac{350\text{GeV}}{500\text{fb}^{-1}}$
ZH	Recoil mass distribution	m _H	110 MeV
ZH	$\sigma(\mathrm{ZH}) \times \mathit{BR}(\mathrm{H} \to \mathrm{invisible})$	$\Gamma_{ m inv}$	0.6%
ZH	$\sigma(\mathbf{ZH}) \times BR(\mathbf{Z} \to \mathbf{l}^+ \mathbf{l}^-)$	g ² _{HZZ}	3.8%
ZH	$\sigma(\mathbf{ZH}) \times \mathit{BR}(\mathbf{Z} \to \mathbf{q}\overline{\mathbf{q}})$	$g^2_{\rm HZZ}$	1.8%
ZH	$\sigma(\mathrm{ZH}) \times BR(\mathrm{H} \to \mathrm{b}\overline{\mathrm{b}})$	$g^2_{ m HZZ} g^2_{ m Hbb}/\Gamma_{ m H}$	0.86%
ZH	$\sigma(\mathrm{ZH}) \times BR(\mathrm{H} \rightarrow \mathrm{c}\overline{\mathrm{c}})$	$g^2_{ m HZZ} g^2_{ m Hcc}/\Gamma_{ m H}$	14%
ZH	$\sigma(\mathrm{ZH}) \times \mathit{BR}(\mathrm{H} \to \mathrm{gg})$		6.1%
ZH	$\sigma(\mathrm{ZH}) \times \mathit{BR}(\mathrm{H} \to \tau^+ \tau^-)$	$g^2_{ m HZZ} g^2_{ m H au au}/\Gamma_{ m H}$	6.2%
ZH	$\sigma(\mathrm{ZH}) \times \mathit{BR}(\mathrm{H} \to \mathrm{WW}^*)$	$g^2_{ m HZZ} g^2_{ m HWW}/\Gamma_{ m H}$	5.1%
$H\nu_e\overline{\nu}_e$	$\sigma(\mathrm{H}\nu_{\mathrm{e}}\overline{\nu}_{\mathrm{e}}) \times BR(\mathrm{H} \to \mathrm{b}\overline{\mathrm{b}})$	$g^2_{ m HWW}g^2_{ m Hbb}/\Gamma_{ m H}$	1.9%
$Hv_e \overline{v}_e$	$\sigma(\mathrm{Hv}_{\mathrm{e}}\overline{\mathrm{v}}_{\mathrm{e}}) \times BR(\mathrm{H} \to \mathrm{c}\overline{\mathrm{c}})$	$g^2_{ m HWW} g^2_{ m Hcc}/\Gamma_{ m H}$	26%
$Hv_e \overline{v}_e$	$\sigma(\mathrm{Hv}_{\mathrm{e}}\overline{\mathrm{v}}_{\mathrm{e}}) \times BR(\mathrm{H} \to \mathrm{gg})$		10%

\sqrt{s} = 1.4 & 3 TeV:

			Statistical	precision
Channel	Measurement	Observable	$1.4 \mathrm{TeV}$ $1.5 \mathrm{ab}^{-1}$	$3 \mathrm{TeV}$ $3.0 \mathrm{ab}^{-1}$
$\mathrm{H}\nu_e\overline{\nu}_e$	$H \to b \overline{b}$ mass distribution	$m_{ m H}$	47 MeV	36 MeV
ZH	$\sigma(\mathrm{ZH}) \times BR(\mathrm{H} \to \mathrm{b}\overline{\mathrm{b}})$	$g^2_{ m HZZ} g^2_{ m Hbb}/ arGamma_{ m H}$	$3.3\%^{\dagger}$	$5.6\%^\dagger$
$H\nu_e\overline{\nu}_e$	$\sigma(\mathrm{Hv}_{\mathrm{e}}\overline{\mathrm{v}}_{\mathrm{e}}) \times BR(\mathrm{H} \to \mathrm{b}\overline{\mathrm{b}})$	$g^2_{ m HWW}g^2_{ m Hbb}/arGamma_{ m H}$	0.4%	0.3%
$Hv_e\overline{v}_e$	$\sigma(\mathrm{Hv}_{\mathrm{e}}\overline{\mathrm{v}}_{\mathrm{e}}) \times BR(\mathrm{H} \to \mathrm{c}\overline{\mathrm{c}})$	$g^2_{ m HWW}g^2_{ m Hcc}/\Gamma_{ m H}$	6.1%	5.6%
$H\nu_e\overline{\nu}_e$	$\sigma(\mathrm{H}\nu_{\mathrm{e}}\overline{\nu}_{\mathrm{e}}) \times BR(\mathrm{H} \to \mathrm{gg})$		5.0%	3.5%
$Hv_e\overline{v}_e$	$\sigma(\mathrm{Hv}_{\mathrm{e}}\overline{\mathrm{v}}_{\mathrm{e}}) \times BR(\mathrm{H} \to \tau^{+}\tau^{-})$	$g^2_{ m HWW}g^2_{ m H au au}/arGamma_{ m H}$	4.2%	3.6%
$Hv_e\overline{v}_e$	$\sigma(\mathrm{Hv}_{\mathrm{e}}\overline{\mathrm{v}}_{\mathrm{e}}) \times BR(\mathrm{H} \to \mu^{+}\mu^{-})$	$g^2_{ m HWW}g^2_{ m H\mu\mu}/arGamma_{ m H}$	38%	20%
$Hv_e\overline{v}_e$	$\sigma(\mathrm{Hv}_{\mathrm{e}}\overline{\mathrm{v}}_{\mathrm{e}}) imes BR(\mathrm{H} ightarrow \gamma\gamma)$		15%	$8\%^*$
$H\nu_e\overline{\nu}_e$	$\sigma(\mathrm{H}\nu_{\mathrm{e}}\overline{\nu}_{\mathrm{e}}) \times BR(\mathrm{H} \to \mathrm{Z}\gamma)$		42%	$24\%^*$
$H\nu_e\overline{\nu}_e$	$\sigma(\mathrm{Hv}_{\mathrm{e}}\overline{\mathrm{v}}_{\mathrm{e}}) \times BR(\mathrm{H} \to \mathrm{WW}^{*})$	$g_{ m HWW}^4/arGamma_{ m H}$	1.0%	$0.6\%^*$
$Hv_e\overline{v}_e$	$\sigma(\mathrm{Hv}_{\mathrm{e}}\overline{\mathrm{v}}_{\mathrm{e}}) \times BR(\mathrm{H} \to \mathrm{ZZ}^{*})$	$g^2_{ m HWW}g^2_{ m HZZ}/\Gamma_{ m H}$	5.6%	$3.2\%^{*}$
He^+e^-	$\sigma(\mathrm{He^+e^-}) \times \mathit{BR}(\mathrm{H} \to \mathrm{b}\overline{\mathrm{b}})$	$g^2_{ m HZZ} g^2_{ m Hbb}/ arGamma_{ m H}$	1.8%	$1.9\%^{*}$
tīH	$\sigma(t\bar{t}H) \times BR(H \to b\bar{b})$	$g_{ m Htt}^2 g_{ m Hbb}^2 / \Gamma_{ m H}$	7.3%	_
$HH\nu_e\overline{\nu}_e$	$\sigma(\mathrm{HHv}_{\mathrm{e}}\overline{\mathrm{v}}_{\mathrm{e}})$	λ	54%	24%
$\mathrm{HH}\nu_{e}\overline{\nu}_{e}$	with $-80\% e^-$ polarisation	λ	40%	18%

- Unpolarised electron beam (equivalent to 50% in both configurations)
- With present knowledge, more data would be collected with $P(e^{-}) = -80\%$ at high energy


†: fast simulation

*: extrapolated from 1.4 to 3 TeV

Based on Eur. Phys. J. C 77, 475 (2017)

Philipp Roloff

CLIC coupling sensitivity (1)

$$\sigma(ZH) \sim g_{HZZ}^{2}$$

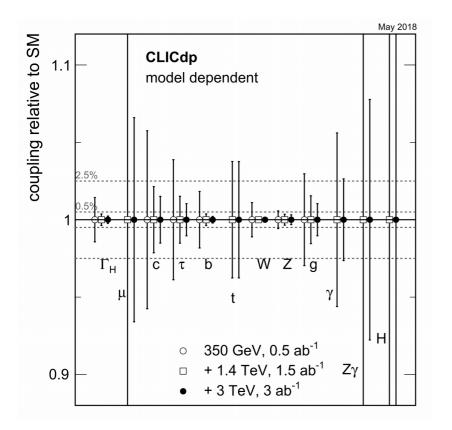
$$\sigma(ZH) \times BR(H \rightarrow VV/ff) \sim g_{HZZ}^{2} g_{HVV/Hff}^{2} / \Gamma_{H}$$

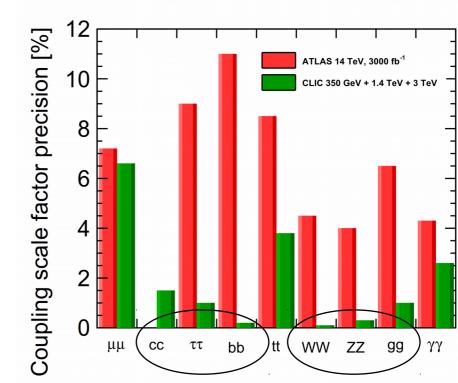
$$\sigma(Hv_{e}v_{e}) \times BR(H \rightarrow VV/ff) \sim g_{HWW}^{2} g_{HVV/Hff}^{2} / \Gamma_{H}$$

- No assumptions on additional Higgs decays (requires lepton collider)
- Correlations included where relevant
- All results limited by 0.8% from $\sigma(HZ)$ measurement
- The Higgs width is extracted with 6.7 - 3.5% precision

Based on Eur. Phys. J. C 77, 475 (2017)

CLIC coupling sensitivity (2)


Only SM Higgs


decays:

Model dependent fit:

$$\kappa_i^2 = \Gamma_i / \Gamma_i^{\mathrm{SM}}$$

BR: SM branching fractions (prediction)

 $I_{\rm H,md}$

 $\overline{\Gamma_{
m H}^{
m SM}}$

 $\sum \kappa_i^2 BR_i$

Based on Eur. Phys. J. C 77, 475 (2017) ATLAS-PHYS-PUB-2014-016

01/06/2018

Philipp Roloff

Overview: ILC projections

Projections for $\sigma(ZH)$ and $\sigma \times BR$ measurements at the ILC

Production channel and energy

$-80\% \ e^-, \ +30\% \ e^+$	polarization:					- N	、 、	$+80\% \ e^{-}, -30\% \ e^{-}$	-					
	$250 { m ~GeV}$		$350~{\rm GeV}$		$500~{\rm GeV}$		\backslash		$250 {\rm GeV}$		$350~{\rm GeV}$		$500 { m GeV}$	
	Zh	$ u \overline{ u} h$	Zh	$ u \overline{ u} h$	Zh	$ u \overline{ u} h$			Zh	$ u \overline{ u} h$	Zh	$ u \overline{ u} h$	Zh	$ u \overline{ u} h$
σ [50–53]	2.0		1.8		4.2			σ	2.0		1.8		4.2	-
$h \rightarrow invis. [54, 55]$	0.86		1.4		3.4			$h \rightarrow invis.$	0.61		1.3		2.4	
$h \to b\overline{b} \ [56-59]$	1.3	8.1	1.5	1.8	2.5	0.93	1	$h \to b\overline{b}$	1.3	33	1.5	7.5	2.5	3.8
$h \to c\overline{c} \ [56, 57]$	8.3		11	19	18	8.8	1	$h \to c \overline{c}$	8.3		11	79	18	36
$h \rightarrow gg$ [56, 57]	7.0		8.4	7.7	15	5.8	1	$h \rightarrow gg$	7.0		8.4	32	15	24
$h \rightarrow WW$ [59–61]	4.6		5.6 *	5.7 *	7.7	3.4	1	$h \to WW$	4.6		5.6	24	7.7	14
$h \to \tau \tau \ [63]$	3.2		4.0 *	16 *	6.1	9.8	1	$h \to \tau \tau$	3.2		4.0	66	6.1	40
$h \to ZZ$ [2]	18		25 *	20 *	35 *	12 *	1	$h \rightarrow ZZ$	18		25	81	35	48
$h \to \gamma \gamma \ [64]$	34 *		39 *	45 *	47	27	1	$h ightarrow \gamma \gamma$	34		39	180	47	11(
$h \rightarrow \mu \mu$ [65, 66]	72 *		87 *	160 *	120 *	100 *	1	$h ightarrow \mu \mu$	72		87	670	120	420

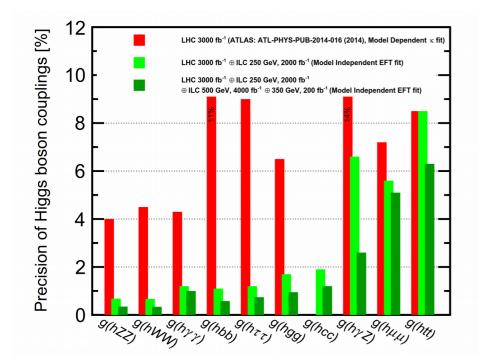
 $P(e^{-}) = -80\%$, $P(e^{+}) = +30\%$, $L = 250 \text{ fb}^{-1}$

 $P(e^{-}) = +80\%$, $P(e^{+}) = -30\%$, $L = 250 \text{ fb}^{-1}$

Assumed luminosities and polarisation sharing:

2 ab^{-1} with (-+,+-,--,++) = (45%,45%,5%,5%) at 250 GeV 4 ab^{-1} with (-+,+-,--,++) = (40%,40%,10%,10%) at 500 GeV

*: extrapolated

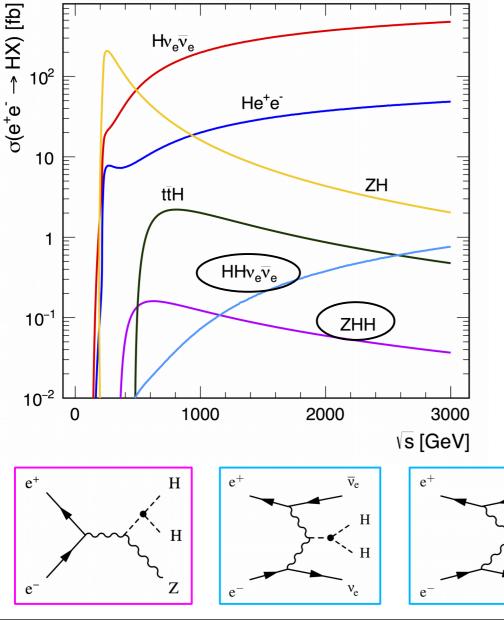

Phys. Rev. D 97, 053003 (2018)

Philipp Roloff

ILC coupling sensitivity

• Fits based on the "kappa" and EFT frameworks

- Similar to CLIC, several couplings measured much better than HL-LHC
- $H \rightarrow c\bar{c}$ difficult at hadron colliders


	C			
	κ fit	EFT fit	κ fit	EFT fit
q(hbb)	1.8	1.1	0.60	0.58
q(hcc)	2.4	1.9	1.2	1.2
g(hgg)	2.2	1.7	0.97	0.95
q(hWW)	1.8	0.67	0.40	0.34
q(h au au)	1.9	1.2	0.80	0.74
q(hZZ)	0.38	0.68	0.30	0.35
$g(h\gamma\gamma)$	1.1	1.2	1.0	1.0
$g(h\mu\mu)$	5.6	5.6	5.1	5.1
$g(h\gamma Z)$	16	6.6	16	2.6
g(hbb)/g(hWW)	0.88	0.86	0.47	0.46
g(h au au)/g(hWW)	1.0	1.0	0.65	0.65
g(hWW)/g(hZZ)	1.7	0.07	0.26	0.05
- h	3.9	2.5	1.7	1.6
$BR(h \to inv)$	0.32	0.32	0.29	0.29
$BR(h \to other)$	1.6	1.6	1.3	1.2

- All fits include ${\sf BR}_{\gamma\gamma}/{\sf BR}_{ZZ},\,{\sf Br}_{\gamma Z}/{\sf Br}_{\gamma\gamma}$ and ${\sf BR}_{\mu\mu}/{\sf BR}_{\gamma\gamma}$ from HL-LHC
- The EFT fit also includes ZH angular distributions, EW precision data and $e^+e^- \rightarrow W^+W^-$

01/06/2018

Philipp Roloff

Double Higgs production

$e^+e^- \rightarrow ZHH$:

• Cross section maximum $\approx 600 \text{ GeV}$, but very small number of events ($\sigma \le 0.2 \text{ fb}$)

 $e^+e^- \rightarrow HHv_e^-\overline{v}_e^-$:

 \overline{v}_{e}

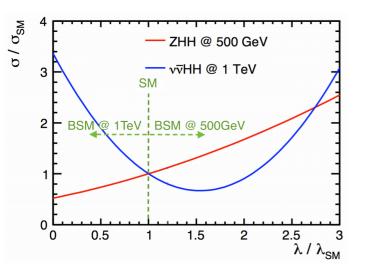
Η

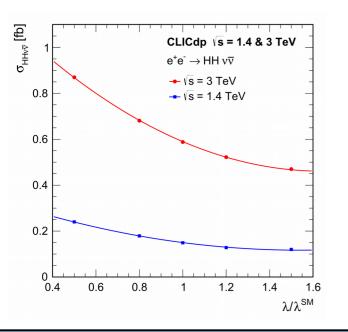
Η

ve

Benefits from high-energy operation

• Also allows to extract the quartic WWHH coupling


The deviations of the Higgs self-coupling from its SM expectation might be sizeable:


Model	$\Delta g_{hhh}/g_{hhh}^{SM}$
Mixed-in Singlet	-18%
Composite Higgs	tens of $\%$
Minimal Supersymmetry	$-2\%^a$ $-15\%^b$
NMSSM	-25%

01/06/2018

Philipp Roloff

Higgs self-coupling measurements

 $HH \rightarrow b\overline{b}b\overline{b}$ is the "golden channel" in e⁺e⁻ collisions, combination with $HH \rightarrow b\overline{b}WW^*$ leads to small improvement

ILC, \sqrt{s} = 500 GeV, L = 4 ab⁻¹: Δλ/λ = 27%

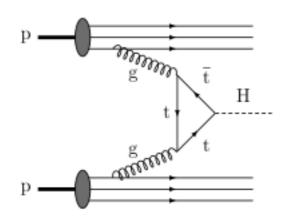
CLIC, $\sqrt{s} = 1.4$ TeV, L = 1.5 ab⁻¹ + $\sqrt{s} = 3$ TeV, L = 3 ab⁻¹: $\Delta\lambda/\lambda = 16\%$ for P(e⁻) = -80% from the total cross section $\Delta\lambda/\lambda \approx 10\%$ for P(e⁻) = -80% from diff. distributions

 $\lambda > \lambda_{SM}$: $\sigma(ZHH)$ at 500 GeV enhanced $\lambda < \lambda_{SM}$: $\sigma(HHv_e v_e)$ at high energy enhanced

> arXiv:1506.05992 Eur. Phys. J. C 77, 475 (2017)

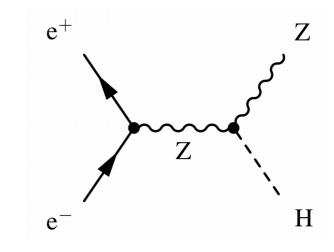
01/06/2018

Philipp Roloff


Summary and conclusions

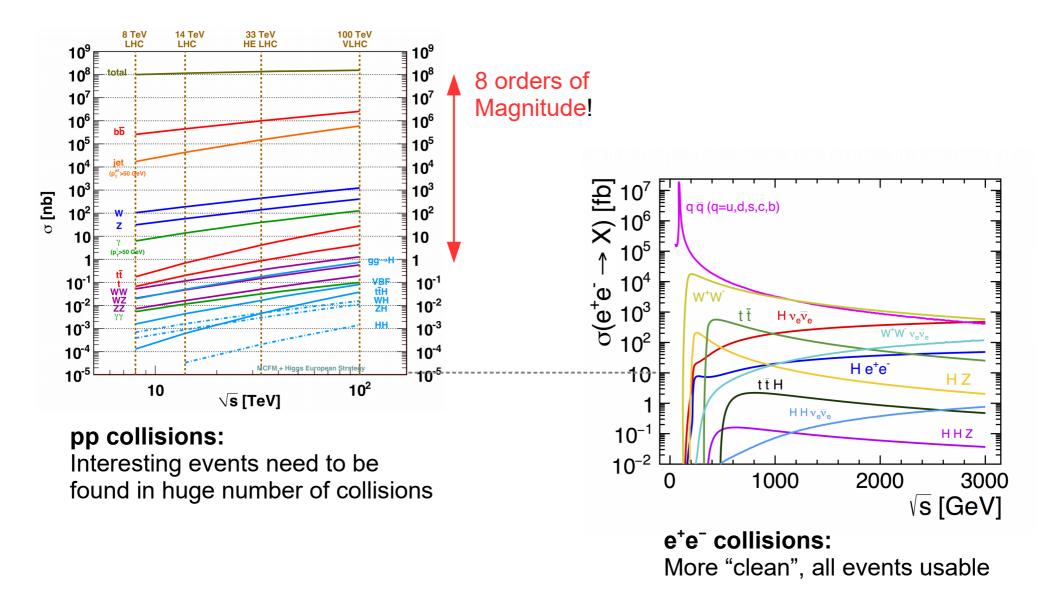
- A lepton collider would enhance our understanding of the Higgs boson significantly beyond the capabilities of the HL-LHC
- The ILC at 250 GeV provides precise measurements of many Higgs couplings and the Higgs mass using the Higgsstrahlung process
- CLIC at 380 GeV also gives access to the WW fusion process (and top pair production)
- Both colliders allow to measure the Higgsstrahlung cross section and extract the total Higgs width in a model-independent manner
- An energy of at least 500 GeV gives access to ttH (best between 800 GeV and 1.5 TeV) and double Higgs production (profits from the highest possible energies)

Backup slides

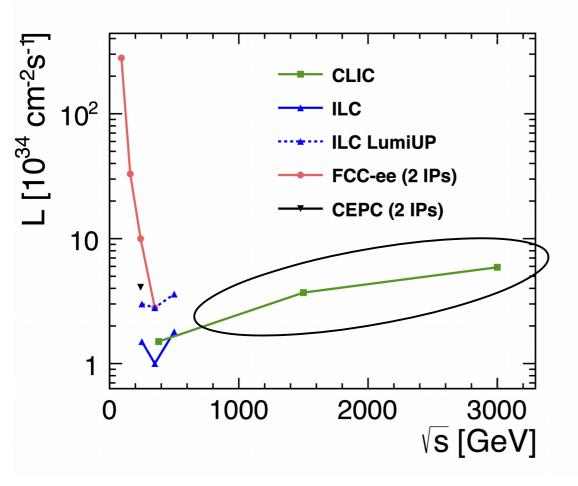

Hadron and e⁺e⁻ colliders

Hadron colliders:

- Proton is compound object
- \rightarrow Initial state unknown
- \rightarrow Limits achievable precision
- High-energy circular colliders possible
- High rates of QCD backgrounds
- \rightarrow Complex triggers
- \rightarrow High levels of radiation


e⁺e⁻ colliders:

- e⁺e⁻ are pointlike
- \rightarrow Initial state well-defined (\sqrt{s} , polarisation)
- \rightarrow High-precision measurements
- High energies (\sqrt{s} > 350 GeV) require linear colliders
- Clean experimental environment
- \rightarrow Less / no need for triggers
- \rightarrow Lower radiation levels


Philipp Roloff

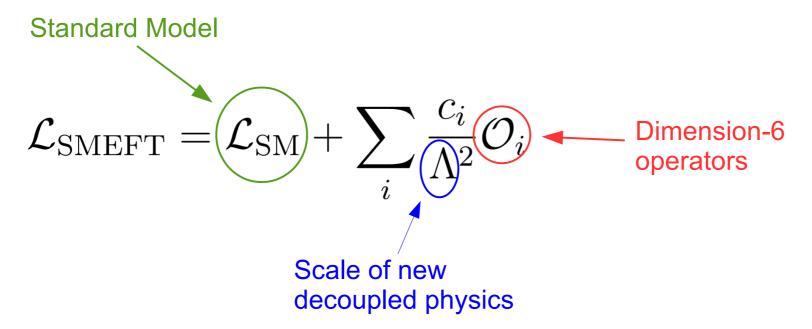
pp and e⁺e⁻ collisions

Philipp Roloff

Comparison of e⁺e⁻ collider options

Linear colliders:

- Can reach the highest energies
- Luminosity rises with energy
- Beam polarisation at all energies

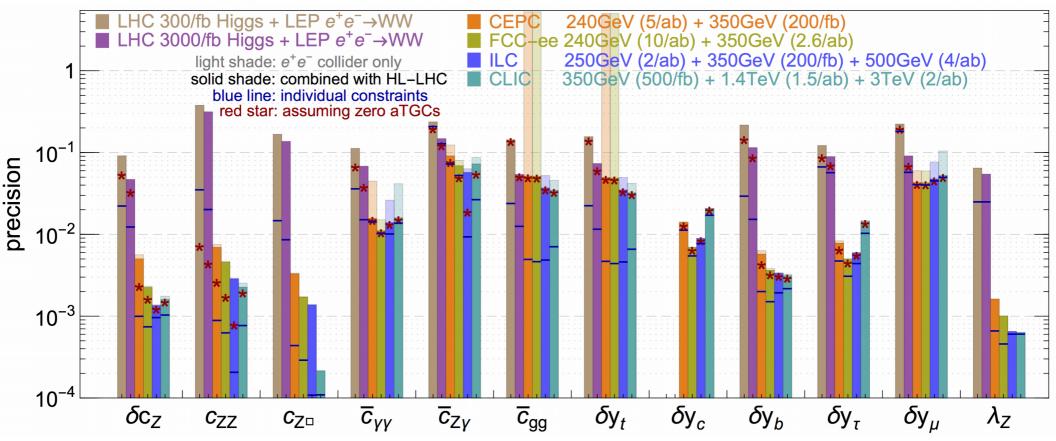

Circular colliders:

- Large luminosity at lower energies
- Luminosity decreases with energy

NB: Peak luminosity at LEP2 (209 GeV) was ≈10³² cm⁻²s⁻¹

BSM potential of Higgs production & $e^+e^- \rightarrow W^+W^-$

Effective Field Theory:

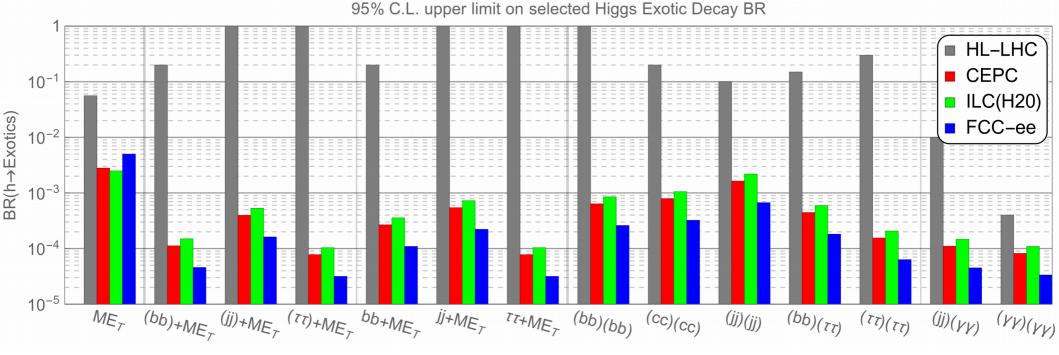

Model-independent framework for probing indirect signs of new physics
 → very useful for comparison of future collider options / parameters

• Input to fits: Higgs production in Higgsstrahlung and WW fusion, $e^+e^- \rightarrow t\bar{t}H$, weak boson pair production: $e^+e^- \rightarrow W^+W^-$

Philipp Roloff

Comparison of different collider options

precision reach of the 12-parameter fit in Higgs basis


Many EFT parameters can be measured significantly better at CLIC compared to the HL-LHC

• $H \rightarrow c\bar{c}$ only accessible in at lepton colliders

arXiv:1704.02333 see also JHEP 1705, 096 (2017)

Philipp Roloff

Exotic Higgs decays

- An e⁺e⁻ Higgs factory would provide large improvements compared to the HL-LHC
- The ILC projections are for 2 ab⁻¹ at 250 GeV
- Potential of WW fusion at higher energies to be explored (more than 1 million Higgs decays at 3 TeV CLIC)

Philipp Roloff