

Revealing the Higgs Sector at Future Colliders

Josh Ruderman (NYU, CERN) @CERN Faculty Meeting 6/1/2018

The Higgs After Run 1

punchline: agrees with SM predictions at ~10s% precision

ATLAS and CMS, 1606.02266

Precision Higgs Program

Future colliders can carry out a precision Higgs program (~0.1-1%)

What will we learn?

Plan

4

- I. Collider Comparison
- II. Effective Field Theory
- III. Beyond the Standard Model

I. Collider Comparison

HL-LHC (Andreas' talk)

signal strengths

Channel	Inclusive	VBF	VH	ttH
γγ	3	10	12	8
ZZ*	3	12	15	18
WW*	5	11	-	15.0
ττ	_	10	-	15 ?
μμ	8	-	-	18
bb	-	?	10 ?	?
Zγ	18	_	_	-

rare decays: ~10-20%

ILC

P(e⁻) = +80%, P(e⁺) = -30%, L = 250 fb⁻¹

$+80\% \ e^{-}, -30\% \ e^{+}$	polarization:		(tota	l proje	ected lumi	i. is 2/at
	$250 {\rm GeV}$		$350~{\rm GeV}$		$500 { m GeV}$	
	Zh	$\nu \overline{\nu} h$	Zh	$ u \overline{ u} h$	Zh	$ u\overline{ u}h$
σ	2.0		1.8		4.2	
$h \rightarrow invis.$	0.61		1.3		2.4	
$h \to b\overline{b}$	1.3	33	1.5	7.5	2.5	3.8
$h \to c \overline{c}$	8.3		11	79	18	36
$h \rightarrow gg$	7.0		8.4	32	15	24
$h \to WW$	4.6		5.6	24	7.7	14
$h \to \tau \tau$	3.2		4.0	66	6.1	40
$h \rightarrow ZZ$	18		25	81	35	48
$h \to \gamma \gamma$	34		39	180	47	110
$h \to \mu \mu$	72		87	670	120	420

Linear Colliders (Philipp's talk)

invisible: 0.6%

bb: 1%

$\sqrt{s} = 350 \text{ GeV}$: CLIC $\sqrt{s} = 1.4 \& 3 \text{ TeV}$:

			Statistical precision
Channel	Measurement	Observable	$\overline{\begin{array}{c} 350\text{GeV}\\ 500\text{fb}^{-1}\end{array}}$
ZH	Recoil mass distribution	m _H	110 MeV
ZH	$\sigma(ZH) \times \textit{BR}(H \rightarrow invisible)$	$\Gamma_{ m inv}$	0.6%
ZH	$\sigma(\mathrm{ZH}) \times \mathit{BR}(\mathrm{Z} \to \mathrm{l}^+ \mathrm{l}^-)$	$g^2_{\rm HZZ}$	3.8%
ZH	$\sigma(\mathbf{Z}\mathbf{H}) \times \mathit{BR}(\mathbf{Z} \to \mathbf{q}\overline{\mathbf{q}})$	$g^2_{\rm HZZ}$	1.8%
ZH	$\sigma(\mathrm{ZH}) \times \mathit{BR}(\mathrm{H} \to \mathrm{b}\overline{\mathrm{b}})$	$g^2_{ m HZZ} g^2_{ m Hbb}/\Gamma_{ m H}$	0.86%
ZH	$\sigma(\mathrm{ZH}) \times BR(\mathrm{H} \to \mathrm{c}\overline{\mathrm{c}})$	$g_{ m HZZ}^2 g_{ m Hcc}^2 / \Gamma_{ m H}$	14%
ZH	$\sigma(\mathrm{ZH}) imes \mathit{BR}(\mathrm{H} ightarrow \mathrm{gg})$		6.1%
ZH	$\sigma(\mathrm{ZH}) \times BR(\mathrm{H} \to \tau^+ \tau^-)$	$g^2_{ m HZZ} g^2_{ m H au au}/arGamma_{ m H}$	6.2%
ZH	$\sigma(\mathrm{ZH}) \times \mathit{BR}(\mathrm{H} \to \mathrm{WW}^*)$	$g^2_{ m HZZ} g^2_{ m HWW}/\Gamma_{ m H}$	5.1%
$H\nu_e\overline{\nu}_e$	$\sigma(\mathrm{Hv}_{\mathrm{e}}\overline{\mathrm{v}}_{\mathrm{e}}) \times \mathit{BR}(\mathrm{H} \to \mathrm{b}\overline{\mathrm{b}})$	$g^2_{ m HWW}g^2_{ m Hbb}/\Gamma_{ m H}$	1.9%
$Hv_e\overline{v}_e$	$\sigma(\mathrm{Hv}_{\mathrm{e}}\overline{\mathrm{v}}_{\mathrm{e}}) \times \mathit{BR}(\mathrm{H} \to \mathrm{c}\overline{\mathrm{c}})$	$g_{\rm HWW}^2 g_{\rm Hcc}^2 / \Gamma_{\rm H}$	26%
$H\nu_e\overline{\nu}_e$	$\sigma(\mathrm{H}\nu_{e}\overline{\nu}_{e})\times \mathit{BR}(\mathrm{H}\to\mathrm{gg})$		10%

WBF x (h>bb, h>WW): 0.3, 0.6% ttH: 7% di-Higgs: 18%

			Statistical	precision
Channel	Measurement	Observable	1.4 TeV	3 TeV
			$1.5 \mathrm{ab}^{-1}$	3.0ab^{-1}
$H\nu_e\overline{\nu}_e$	$H \to b \overline{b}$ mass distribution	m _H	47 MeV	36 MeV
ZH	$\sigma(\mathrm{ZH}) \times BR(\mathrm{H} \to \mathrm{b}\overline{\mathrm{b}})$	$g^2_{ m HZZ} g^2_{ m Hbb} / \Gamma_{ m H}$	$3.3\%^\dagger$	5.6% [†]
$Hv_e\overline{v}_e$	$\sigma(\mathrm{Hv}_{\mathrm{e}}\overline{\mathrm{v}}_{\mathrm{e}}) \times BR(\mathrm{H} \to \mathrm{b}\overline{\mathrm{b}})$	$g^2_{ m HWW}g^2_{ m Hbb}/arGamma_{ m H}$	0.4%	0.3%
$Hv_e \overline{v}_e$	$\sigma(\mathrm{Hv}_{\mathrm{e}}\overline{\mathrm{v}}_{\mathrm{e}}) \times BR(\mathrm{H} \to \mathrm{c}\overline{\mathrm{c}})$	$g^2_{ m HWW}g^2_{ m Hcc}/\Gamma_{ m H}$	6.1%	5.6%
$Hv_e\overline{v}_e$	$\sigma(\mathrm{Hv}_{\mathrm{e}}\overline{\mathrm{v}}_{\mathrm{e}}) \times \mathit{BR}(\mathrm{H} \to \mathrm{gg})$		5.0%	3.5%
$H\nu_e\overline{\nu}_e$	$\sigma(H\nu_e\overline{\nu}_e)\times \textit{BR}(H\to\tau^+\tau^-)$	$g^2_{ m HWW}g^2_{ m H au au}/arGamma_{ m H}$	4.2%	3.6%
$Hv_e\overline{v}_e$	$\sigma(\mathrm{Hv}_{\mathrm{e}}\overline{\mathrm{v}}_{\mathrm{e}}) \times BR(\mathrm{H} \to \mu^{+}\mu^{-})$	$g^2_{ m HWW}g^2_{ m H\mu\mu}/\Gamma_{ m H}$	38%	20%
$Hv_e\overline{v}_e$	$\sigma(\mathrm{H} \mathrm{v}_{\mathrm{e}} \overline{\mathrm{v}}_{\mathrm{e}}) imes \mathit{BR}(\mathrm{H} ightarrow \gamma \gamma)$		15%	$8\%^*$
$Hv_e\overline{v}_e$	$\sigma(\mathrm{H}\nu_{\mathrm{e}}\overline{\nu}_{\mathrm{e}}) \times BR(\mathrm{H} \to \mathrm{Z}\gamma)$		42%	$24\%^{*}$
$H\nu_e\overline{\nu}_e$	$\sigma(H\nu_e\overline{\nu}_e)\times \textit{BR}(H\to WW^*)$	$g_{ m HWW}^4/arGamma_{ m H}$	1.0%	$0.6\%^{*}$
$Hv_e\overline{v}_e$	$\sigma(\mathrm{Hv}_{\mathrm{e}}\overline{\mathrm{v}}_{\mathrm{e}}) \times \mathit{BR}(\mathrm{H} \to \mathrm{ZZ}^{*})$	$g^2_{ m HWW}g^2_{ m HZZ}/arGamma_{ m H}$	5.6%	$3.2\%^{*}$
He^+e^-	$\sigma(\mathrm{He^+e^-}) \times \mathit{BR}(\mathrm{H} \to \mathrm{b}\overline{\mathrm{b}})$	$g^2_{ m HZZ} g^2_{ m Hbb}/\Gamma_{ m H}$	1.8%	$1.9\%^{*}$
tīH	$\sigma(t\bar{t}H) \times BR(H \to b\bar{b})$	$g_{ m Htt}^2 g_{ m Hbb}^2 / \Gamma_{ m H}$	7.3%	_
$HH\nu_e\overline{\nu}_e$	$\sigma(HH\nu_e\overline{\nu}_e)$	λ	54%	24%
$\mathrm{HH}\nu_{e}\overline{\nu}_{e}$	with $-80\% e^-$ polarisation	λ	40%	18%

FCC		FCC-e	e		(Patr	ick's talk)
		√s (L)	240 GeV	(5 ab-1)	365 GeV	(1.5 ab ⁻¹)
		$BR \times \sigma(\%)$	HZ	ννΗ	HZ	ννΗ
	$\sigma_{ZH}:0.5\%$ ($H \rightarrow any$	0.5		0.9	
	bb. 0.3%	$H \rightarrow bb$	0.3	3.1	0.5	0.9
	00.0.3%	$H \rightarrow cc$	2.2		6.5	10
		H → gg	1.9		3.5	4.5
		$H \rightarrow WW$	1.3		2.6	3.0
		$H \rightarrow ZZ$	4.4		12	10
		$H \rightarrow \tau \tau$	0.9		1.8	8
		$H \rightarrow \gamma \gamma$	9.0		22	
		$H \rightarrow \mu\mu$	19		40	
	invisible: 0.3% <	$H \rightarrow inv.$	< 0.3		< 0.6	

FCC-hh

(Michelangelo's talk)

Observable	Parameter	Precision (stat)	Precision (stat+syst)	
$\mu = \sigma(H) \times B(H \to \mu\mu)$	$\delta \mu / \mu$	0.5%	0.9%	
$\mu = \sigma(H) imes B(H o \gamma \gamma)$	$\delta \mu / \mu$	0.1%	1%	
$\mu = \sigma(H) imes B(H o 4\mu)$	$\delta \mu / \mu$	0.2%	1.6%	
$\mu = \sigma(t\bar{t}H) \times B(H \to b\bar{b})$	$\delta \mu / \mu$	1%	tbd	
$\mu = \sigma(HH) \times B(H \to \gamma\gamma)B(H \to b\bar{b})$	$\delta\lambda/\lambda$	3.5%	5.0%	HH: 5%
$R = B(H \to \mu\mu)/B(H \to 4\mu)$	$\delta R/R$	0.6%	1.3%	
$R = B(H \to \gamma \gamma)/B(H \to 2e2\mu)$	$\delta R/R$	0.17%	0.8%	
$R = B(H o \gamma \gamma) / B(H o 2\mu)$	$\delta R/R$	0.6%	1.4%	
$B(H \rightarrow \text{invisible})$	B@95%CL	1×10^{-4}	2.5×10^{-4}	invisible: few x 10

hh/ee Synergy from Rare Channel Ratios

9

M. Selvaggi, 2nd FCC Physics Workshop

FCC-hh

Observable	Parameter	Precision (stat)	Precision (stat+syst)
$R = B(H \to \mu\mu)/B(H \to 4\mu)$	$\delta R/R$	0.6%	1.3%
$R = B(H \to \gamma \gamma) / B(H \to 2e2\mu)$	$\delta R/R$	0.17%	0.8%

╋

FCC-ee/CEPC: σ_{ZH} (0.5%)

Collider Comparison Punchlines

 baseline e⁺e⁻ (FCC-ee, ILC250, CLIC350) perform percent-level measurements of "core" Higgs processes

 FCC-hh and CLIC1.4-3 open up kinematically limited processes (HH, tth)

•FCC-hh precisely measures rare decays (using ratios and combination with e⁺e⁻) and invisible decays

Liu, Wang, Zhang, 1612.09284

II. Effective Field Theory

SM EFT

• dim 5: Majorana neutrino mass

$$\frac{(LH)^2}{\Lambda} \qquad m_{\nu} = \frac{v^2}{2\Lambda}$$

 $\Lambda \sim 10^{14}~{\rm GeV}$

- dim 6: 2499 baryon number conserving operators
 - 7 557 369 962 100 000 000 No. of independent ops 257 378 Henning, Lu, Melia, Murayama, 1512.03433 Mass dimension

• beyond dim 6:

EFT Fit from Higgs Measurements

Jorge de Blas prepared a global EFT fit using the projections presented in today's talks

- included:
- LEP electroweak
- future Higgs coupling measurements

a) HL-LHC alone b) HL-LHC combined with future colliders 15

- Higgs kinematic fits
- not included: - theoretical uncertainties
 - future electroweak precision

warning: this was done quickly, so results are preliminary

Jorge de Blas,

see also:

"Global fits to EW and Higgs observables at the FCC," FCC Week 2018, April 11, 2018.

Operators Included in This Fit

fit	
float	

X^3			φ^6 and $\varphi^4 D^2$	$\psi^2 arphi^3$		
Q_G	$f^{ABC}G^{A\nu}_{\mu}G^{B\rho}_{\nu}G^{C\mu}_{\rho}$	Q_{arphi}	$(arphi^\dagger arphi)^3$	$Q_{e\varphi}$	$(arphi^{\dagger}arphi)(ar{l}_{p}e_{r}arphi)$	
$Q_{\widetilde{G}}$	$f^{ABC} \widetilde{G}^{A\nu}_{\mu} G^{B\rho}_{\nu} G^{C\mu}_{\rho}$	$Q_{\varphi\Box}$	$(\varphi^{\dagger}\varphi)\Box(\varphi^{\dagger}\varphi)$	$Q_{u\varphi}$	$(\varphi^{\dagger}\varphi)(\bar{q}_{p}u_{r}\widetilde{\varphi})$	
Q_W	$\varepsilon^{IJK} W^{I\nu}_{\mu} W^{J\rho}_{\nu} W^{K\mu}_{\rho}$	$Q_{\varphi D}$	$\left(\varphi^{\dagger}D^{\mu}\varphi\right)^{\star}\left(\varphi^{\dagger}D_{\mu}\varphi\right)$	Q_{darphi}	$(\varphi^{\dagger}\varphi)(\bar{q}_{p}d_{r}\varphi)$	
$Q_{\widetilde{W}}$	$\varepsilon^{IJK}\widetilde{W}^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho}$					
	$X^2 \varphi^2$		$\psi^2 X \varphi$		$\psi^2 arphi^2 D$	
$Q_{\varphi G}$	$\varphi^{\dagger}\varphiG^{A}_{\mu\nu}G^{A\mu\nu}$	Q_{eW}	$(\bar{l}_p \sigma^{\mu\nu} e_r) \tau^I \varphi W^I_{\mu\nu}$	$Q_{\varphi l}^{(1)}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\overline{l}_{p}\gamma^{\mu}l_{r})$	
$Q_{\varphi \widetilde{G}}$	$\varphi^{\dagger}\varphi\widetilde{G}^{A}_{\mu\nu}G^{A\mu\nu}$	Q_{eB}	$(\bar{l}_p \sigma^{\mu\nu} e_r) \varphi B_{\mu\nu}$	$Q_{\varphi l}^{(3)}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}^{I}\varphi)(\bar{l}_{p}\tau^{I}\gamma^{\mu}l_{r})$	
$Q_{\varphi W}$	$\varphi^{\dagger}\varphi W^{I}_{\mu u}W^{I\mu u}$	Q_{uG}	$(\bar{q}_p \sigma^{\mu\nu} T^A u_r) \widetilde{\varphi} G^A_{\mu\nu}$	$Q_{\varphi e}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{e}_{p}\gamma^{\mu}e_{r})$	
$Q_{\varphi \widetilde{W}}$	$\varphi^{\dagger}\varphi\widetilde{W}^{I}_{\mu u}W^{I\mu u}$	Q_{uW}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \tau^I \widetilde{\varphi} W^I_{\mu\nu}$	$Q^{(1)}_{\varphi q}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{q}_{p}\gamma^{\mu}q_{r})$	
$Q_{\varphi B}$	$\varphi^{\dagger}\varphiB_{\mu u}B^{\mu u}$	Q_{uB}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \widetilde{\varphi} B_{\mu\nu}$	$Q^{(3)}_{\varphi q}$	$(\varphi^{\dagger}i\overleftrightarrow{D}^{I}_{\mu}\varphi)(\bar{q}_{p}\tau^{I}\gamma^{\mu}q_{r})$	
$Q_{\varphi \widetilde{B}}$	$\varphi^{\dagger} \varphi \widetilde{B}_{\mu u} B^{\mu u}$	Q_{dG}	$(\bar{q}_p \sigma^{\mu\nu} T^A d_r) \varphi G^A_{\mu\nu}$	$Q_{\varphi u}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{u}_{p}\gamma^{\mu}u_{r})$	
$Q_{\varphi WB}$	$\varphi^{\dagger}\tau^{I}\varphiW^{I}_{\mu\nu}B^{\mu\nu}$	Q_{dW}	$(\bar{q}_p \sigma^{\mu\nu} d_r) \tau^I \varphi W^I_{\mu\nu}$	$Q_{arphi d}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{d}_{p}\gamma^{\mu}d_{r})$	
$Q_{\varphi \widetilde{W}B}$	$\varphi^{\dagger}\tau^{I}\varphi\widetilde{W}^{I}_{\mu\nu}B^{\mu\nu}$	Q_{dB}	$(\bar{q}_p \sigma^{\mu\nu} d_r) \varphi B_{\mu\nu}$	$Q_{arphi ud}$	$i(\widetilde{\varphi}^{\dagger}D_{\mu}\varphi)(\bar{u}_{p}\gamma^{\mu}d_{r})$	

16

$Q_{ll} \left| (\bar{l}_p \gamma_\mu l_r) (\bar{l}_s \gamma^\mu l_t) \right|$

"Warsaw Basis," Grzadkowski, Iskrzynski, Misiak, Rosiek, 1008.4884

*important information is also contained in the correlations

*important information is also contained in the correlations

In a Global Fit, Correlations Matter!

Global EFT Fit - Partial Width Constraints

19

Global EFT Fit - Partial Width Constraints

19

III. Beyond the Standard Model

III. Beyond the Standard Model

Electroweak Phase Transition

Was the electroweak phase transition first order?

Morrissey, Ramsey-Musolf, **1206.2942**

Sakharov's Conditions:

- 1. baryon number violation
- 2. C and CP violation
- 3. departure from equilibrium

SM: not first order, no electroweak baryogenesis BSM: can be first order but predicts Higgs deviations

Huang, Long, Wang, 1608.06619

Naturalness Predicts Light Top Partners

ex) stops in supersymmetry

tuning ~ 0.1
$$\left(\frac{700 \,\text{GeV}}{m_{\tilde{t}_1} + m_{\tilde{t}_2}}\right)^2$$

State of Stops

Light Top Partners Predict Higgs Deviations

Higgs Probes Stops

Essig, Meade, Ramani, Zhong, 1707.03399

Essig, Meade, Ramani, Zhong, 1707.03399

Dark Matter at the Higgs Pole

$$m_{\rm DM} \approx \frac{m_h}{2}$$

in the early Universe:

de Simone, Giudice, Strumia, 1402.6287

Dark Matter at the Higgs Pole

de Simone, Giudice, Strumia, 1402.6287

Conclusions

dark matter

naturalness

