FROM RAW DATA TO PHYSICS

LECTURE 3

WHAT DO WE RECONSTRUCT

Bosons

RECONSTRUCTING PARTICLES

KV

	2.4 MeV	1.3 GeV	170 GeV	0	
ks	u	С	t	Υ	
аг	4.8 MeV	104 MeV	4.2 GeV	0	
Du		1011101		g	S
	a	S	a	91 GeV	n
2	<2 eV	<2 eV	<2 eV	Z	SSO
ns	v	v	v	80 GeV	ğ
to	'e	Ψµ	τ	W	
ep	0.5 MeV	16 MeV	1.8 GeV	126 GeV	
Ĕ	е	μ	τ	Н	

muon

TAUS

Tau Decay	B.R.		
Leptonic		$\tau^{\pm} \rightarrow e^{\pm} + v + v$	17.8%
		$\tau^{\pm} \rightarrow \mu^{\pm} + \nu + \nu$	17.4%
Hadronic	1- $\tau^{\pm} \rightarrow \pi^{\pm} + \nu$		11%
	prong	$\tau^{\pm} \rightarrow \pi^{\pm} + \nu + n\pi^0$	35%
	3- prong	$\tau^{\pm} \rightarrow 3\pi^{\pm} + v$	9%
		$\tau^{\pm} \rightarrow 3\pi^{\pm} + \nu + n\pi^0$	5%
Other			~5%

- Hadronic tau reconstruction extremely challenging.
- Using multi-variate techniques based on track multiplicity and shower shapes.

A tau jet (signal)...

...vs. a QCD jet (background)

AND THE HIGGS!

LECTURE 3

SIMPLE EXAMPLE:

MEASURING Z⁰ CROSS-SECTION AT LHC

MEASURING Z⁰ CROSS-SECTION AT LHC

Ø Z⁰ boson decays to lepton or quark pairs

◎ We can reconstruct it in the e^+e^- or $\mu^+\mu^-$ decay modes

 Discovery and study of the Z^o boson was a critical part understanding the electroweak force.

◎ And now, at the LHC?

- Important test of theory: does the measurement agree with the theoretical prediction at LHC collision energy?
- A standard candle for studying reconstruction and deriving calibrations.
- Can be used for luminosity determination!

MEASURING Z⁰ CROSS-SECTION AT LHC

MEASURING Z⁰ CROSS-SECTION AT LHC

RECONSTRUCTING Z⁰'S

How do we know it's a Z^O?

Identify Z decays using the invariant mass of the 2 leptons $M^2 = (L_1 + L_2)^2$ where $L_i = (E_i, \underline{p}_i) = 4$ -vector for lepton i

Under assumption that lepton is massless compared to mass of Z^0 => $M^2 = 2 E_1 E_2 (1 - \cos \theta_{12})$ where θ_{12} = angle between the leptons

So need to reconstruct the electron and muon energy and direction. Then can calculate the mass.

Select Z^O events with 'analysis cuts':

- Events with 2 high momentum electrons or muons
- Require the electrons or muons are of opposite charge
- With di-lepton mass close to the Z⁰ mass (e.g. 70<m_{I+I-}<110 GeV)</p>

70

e⁺/ μ⁺

e⁻/μ⁻

RECONSTRUCTING Z⁰'S

How do we know it's a Z^O?

Identify Z decays using the invariant mass of the 2 leptons $M^2 = (L_1 + L_2)^2$ where $L_i = (E_i, \underline{p}_i) = 4$ -vector for lepton i

Under assumption that lepton is massless compared to mass of Z^0 => $M^2 = 2 E_1 E_2 (1 - \cos \theta_{12})$ where θ_{12} = angle between the leptons

So need to reconstruct the electron and muon energy and direction. Then can calculate the mass.

Select Z^O events with 'analysis cuts':

- Events with 2 high momentum electrons or muons
- Require the electrons or muons are of opposite charge
- With di-lepton mass close to the Z⁰ mass (e.g. 70<m_{I+I-}<110 GeV)</p>

70

e⁺/ μ⁺

e⁻/μ⁻

http://www.nobelprize.org/nobel_prizes/physics/laureates/1984/rubbia-lecture.pdf 20

MEASURING THE Z⁰ CROSS-SECTION

Theoretically

Cross-section calculated for:

- Specific production mechanism (pp, pp, e⁺e⁻)
- Centre-of-Mass of the collisions (7, 8, 13 TeV at LHC)

di-muon mass

Experimentally

$$\sigma \cdot \mathrm{BR} = rac{\mathrm{Number of events}}{\alpha \cdot \epsilon \cdot \mathrm{L}}$$

N of events:

N of events on data – N of expected background events α – acceptance:

fraction of events passing selection requirements ϵ – efficiency:

reconstruction efficiency of relevant objects L - luminosity

MEASURING THE Z⁰ CROSS-SECTION

Theoretically

Cross-section calculated for:

- Specific production mechanism (pp, pp, e⁺e⁻)
- Centre-of-Mass of the collisions (7, 8, 13 TeV at LHC)

Experimentally

MEASURING THE Z⁰ CROSS-SECTION

MEASURING THE W CROSS-SECTION

MEASURING THE W CROSS-SECTION

ANALYSIS FLOW IN Z⁰ CROSS-SECTION MEASUREMENT

ANALYSIS FLOW IN Z⁰ CROSS-SECTION MEASUREMENT

SIMPLE SEARCH EXAMPLE:

SEARCH FOR A HEAVY Z'

Iike Z->ee but at higher mass.

32

Iike Z->ee but at higher mass.

33

Select 2 electron candidates and plot their invariant mass for: **1. Data**

Iike Z->ee but at higher mass.

Select 2 electron candidates and plot their invariant mass for:

- 1. Data
- 2. Simulated background events

Iike Z->ee but at higher mass.

Select 2 electron candidates and plot their invariant mass for:

- 1. Data
- 2. Simulated background events
- 3. Simulated signal with different masses
SEARCH FOR A NEW HEAVY Z'

Iike Z->ee but at higher mass.

Select 2 electron candidates and plot their invariant mass for:

- 1. Data
- 2. Simulated background events
- 3. Simulated signal with different masses

Data inconsistent with a 1TeV Z'

37

SEARCH FOR A NEW HEAVY Z'

Ike Z->ee but at higher mass.

Select 2 electron candidates and plot their invariant mass for:

- 1. Data
- 2. Simulated background events
- 3. Simulated signal with different masses

Cross-section decreases with mass (higher the mass of the Z', the more data needed to discover it)

SEARCH FOR A NEW HEAVY Z'

And similar for muons

Select 2 muon candidates and plot their invariant mass for:

- 1. Data
- 2. Simulated background events
- 3. Simulated signal with different masses

Data inconsistent with a 1TeV Z'

A SMALL COMPARISON

Differences in:

- Resolution
- Background composition
- Dataset

EVOLUTION...

SEARCHES...

A "WELL KNOWN" BUMP SEARCH

THANK YOU MARIO!

BUT OUR PRINCESS IS IN ANOTHER CASTLE!

SEARCHES...

TYPICAL SUSY SEARCHES

TYPICAL SUSY SEARCHES

ANOTHER SEARCH EXAMPLE:

SEARCH FOR SUSY IN EVENTS WITH LARGE JET MULTIPLICITIES

b-jets

b-jets

Signal regions can range in jet p_T and jet & b-jet multiplicity.

"fat-jets"

Fat-jets are a key signature in searches for boosted objects, e.g. boosted tops.

 $m_j (\text{QCD}) < m_j (\text{SUSY})$

Proposed in arXiv:1202.0558

"fat-jets"

 $m_j (\text{QCD}) < m_j (\text{SUSY})$

Proposed in arXiv:1202.0558

"fat-jets"

 $M_J^{\Sigma} = \sum_{i=1}^{nJ} m_{j_i}$

 $m_j (\text{QCD}) < m_j (\text{SUSY})$

Proposed in arXiv:1202.0558

Signal regions can range in jet multiplicity and M_{J}^{Σ} cuts.

"b-jet stream" ------

ID		8j5	0		9j5	0	≥10j50		7j8	0		≥8j80			
Jet η							< 2.0				_				
Jet p _T				50	Ge	eV				80 G	GeV				
Jet count	=8			=9			≥10	=7		≥8					
b-jets	0	1	≥2	0	1	≥2	-	0	1	≥2	0	1	≥2		
ME _T /√H _T		> 4 GeV ¹ / ₂													

An example of a search

"fat-jet stream"

ID	≥8	j50	≥9	j50	≥10j50		
Jet η			<)	2.8			
Jet p _T	50 GeV						
Jet count	2	:8	2	:9	≥10		
M_J^Σ (GeV)	>340	>420	>340	>420	>340	>420	
ME _T /√H _T	> 4 GeV ¹ ⁄ ₂						

Proposed in arXiv:1202.0558

$$M_J^\Sigma = \sum_{i=1}^{nJ} m_{j_i}$$
 60

RESULTS

ID		8j50			9j50		≥10j50	0
b-jets	0	1	≥2	0	1	≥2	0	
Expected evts	35±4	40±10	50±10	3.3±0.7	6.1±1.7	8.0±2.7	' 1.37±0.	35
Observed evts	40	44	44	5	8	7	3	
Significance (σ)	0.7	-0.02	-0.6	0.8	0.6	-0.28	1.11	
ID			7i80					
b-jets	0		1	≥2	0	1	≥2	
Expected evts	11.0±2	2.2	17±6	25±10	0.9±0.6	1.5±0.9	3.3±2.2	
Observed evts	12		17	13	2	1	3	
	0.01		0.44	4.0	0.0	0.00	0.00	

ອ
Ð
Ц,
Ś
÷
Ð
. —
Ħ
Ψ

ID	≥8	3j50	≥9	50	≥10j50		
M_{I}^{Σ} (GeV)	340	420	340	420	340	420	
Expected evts	75±19	45±14	17±7	11±5	3.2±3.7	2.2±2.0	
Observed evts	69	37	13	9	1	1	
Significance (σ)	-0.27	-0.6	-0.6	-0.34	-0.8	-0.6	

RESULTS

ID		8j50			9j50		≥10j50	
b-jets	0	1	≥2	0	1	≥2	0	
Expected evts	35±4	40±10	50±10	3.3±0.7	6.1±1.7	8.0±2.7	1.37±0.3	
Observed evts	40	44	44	5	8	7	3	
Significance (σ)	0.7	-0.02	-0.6	0.8	0.6	-0.28	1.11	
ID		7j80			≥8j80			
b-jets	0		1	≥2	0	1	≥2	
Expected evts	11.0±2	2.2	17±6	25±10	0.9±0.6	1.5±0.9	3.3±2.2	
Observed evts	12		17	13	2	1	3	
Significance (g)	0.05		0 1 4	1 0	0.0	0.20	0.06	

Е
ອ
ົດ
Sti
Ū
Ē
ש
<u> </u>

ID	≥8	Bj50	≥9	50	≥10j50		
M_{I}^{Σ} (GeV)	340	420	340	420	340	420	
Expected evts	75±19	45±14	17±7	11±5	3.2±3.7	2.2±2.0	
Observed evts	69	37	13	9	1	1	
Significance (σ)	-0.27	-0.6	-0.6	-0.34	-0.8	-0.6	

RESULTS

INTERPRETATIONS

Real or Simplified models

Simplified topologies include typically one production and one decay process. Provide useful information for theorists.

INTERPRETATIONS

Real or Simplified models

Simplified topologies include typically one production and one decay process. Provide useful information for theorists.

26	С	ontents			
27	1	Introduction			3
28	2	Differences compared to the previous multijet analysis			3
29	3	Data-set and Monte Carlo samples			5
30		3.1 Data Sample			
31		3.2 Standard Model Monte-Carlo			5
32		3.3 Signal Models		•••	5
33	4	Trigger			10
34	5	Object selection and event cleaning			
35		5.1 Definition of Primary Objects	65		11.2 In
36		5.2 General Analysis Cuts	66		1
	6	Effect of Dile up on ista	67		11
37	0	Enect of Phe-up on jets	68	12	Conclu
38	7	Event selection			
39		7.1 Signal region optimization	69	Α	B-taggi
40		7.2 Jet mass selection	70	в	Ontimi
41		7.3 Signal region definitions	70	2	B.1 M
42	8	Standard Model background estimation	72		B.2 M
43		8.1 Multi-Jet Production	73		B.3 M
44		8.1.1 Central jets, split by <i>b</i> -tag	74		В
45		8.1.2 Total Jet Mass, $M_{\rm J}^{\Sigma}$	75	С	Trigger
46		8.2 Leptonic backgrounds	75	C	111660
47		8.2.1 $t\bar{t}$ and W +jets Background	76	D	Theory
48		8.2.2 Z+jets Background	77		D.1 <i>tī</i>
49		8.3 Other SM Processes	78		D.2 Si
50		8.4 Summary	79		D.3 V
51	9	Systematic uncertainties	80		D.4 I
52		9.1 Experimental Uncertainties	81	Е	Sensitiv
53		9.2 Theoretical Uncertainties		Б	C' 1
54		9.2.1 $t\bar{t}$ Systematics	82	r	Signal
55		9.2.2 <i>W</i> +jets Systematics	83	G	Heavy
56		9.2.3 $W + b/b/bb$ +jets Systematics			
57		9.2.4 $Z \rightarrow vv+jets$ Systematics	84	н	Signal
58		9.2.5 Single Top Systematics	85		H.I D-
59		9.2.6 $u+w/Z$ Systematics	86		11.2 1
60	10	Statistical Methods	87	Ι	Minor
61	11	Results and Interpretation	88	J	Fit test
62		11.1 Fit results	89	K	Stream
63		11.1.1 <i>b</i> -jet analysis stream $\dots \dots \dots$			
64		11.1.2 $M_{\rm J}^2$ analysis stream	90	L	HEP da
			91	М	Event d

CONTENTS OF A RANDOM SEARCH INTERNAL DOCUMENTATION

00		11.2 Interpretation	156
66		11.2.1 Model independent limits	156
67		11.2.2 Limits	157
68	12	Conclusions	161
69	A	B-tagging in Different Monte-Carlo Samples	165
70	В	Optimization studies	166
71		B.1 Multijet plus b-jets signal regions	166
72		B.2 Multijet plus M_1^{Σ} signal regions	173
73		B.3 Multijet plus M_1^{Σ} control regions - systematic uncertainties	177
74		B.3.1 Reweighting distributions using the leading fat jet p_T	182
75	С	Trigger	197
76	р	Theory Systematic Variations	203
70	ν	D_1 t Systematic variations	203
70		D.2 Single Ton Systematic variations	203
70		D.2 Vector Boson \perp Lets Systematic variations	204
20		D.4 Tthar+V Systematic variations	204
80			204
81	Е	Sensitivity to SUSY models	208
82	F	Signal contamination	229
00			
63	G	Heavy Flavour systematics	237
84	G н	Heavy Flavour systematics Signal region distributions	237 242
84 85	G H	Heavy Flavour systematics Signal region distributions H 1 brief SRs	237 242 242
84 85 86	G H	Heavy Flavour systematics Signal region distributions H.1 b -jet SRs H.2 M^{Σ} SRs	237 242 242 244
84 85 86	G H	Heavy Flavour systematics Signal region distributions H.1 b -jet SRs H.2 M_J^{Σ} SRs	237 242 242 244
84 85 86 87	G H I	Heavy Flavour systematics Signal region distributions H.1 b-jet SRs H.2 M_J^{Σ} SRs Minor backgrounds	 237 242 242 244 244 247
84 85 86 87 88	G H I J	Heavy Flavour systematics Signal region distributions H.1 b-jet SRs H.2 M _J ^Σ SRs Minor backgrounds Fit tests	 237 242 242 244 247 250
84 85 86 87 88 88	G H I J K	Heavy Flavour systematics Signal region distributions H.1 b-jet SRs H.2 M _J ^Σ SRs Minor backgrounds Fit tests Stream overlap	 237 242 242 244 247 250 250
84 85 86 87 88 89 90	G H J K L	Heavy Flavour systematics Signal region distributions H.1 b-jet SRs H.2 M_J^{Σ} SRs Minor backgrounds Fit tests Stream overlap HEP data	 237 242 242 244 247 250 250 256

- Data-set and Monte Carlo samples
- Trigger
- Object definitions and event selections
- Background determination
- Systematic uncertainties
- Statistical methods
- Results
- Interpretations

- Data-set and Monte Carlo samples
- Trigger
- Object definitions
- Background dete
- Systematic uncer
- Statistical methol
- Results
- Interpretations

The data and simulation samples used in the analysis. Data for the measurement / search, simulation to compare data to predictions.

Monte carlo sample specifics:

- Generator, tunes.
- Statistics.

- Data-set and Monte Carlo samples
- Trigger
- Object defin
- Background det
 A
- Systematic uncer
- Statistical methol
- Results
- Interpretations

The trigger used to collect the data with.

Trigger specifics:

- Prescales; typically unprescaled triggers are used, prescaled triggers for QCD / high stat measuments.
- Trigger (in)efficiencies.

- Data-set and Monte Carlo samples
- Trigger
- Object definitions and event selections

- Data-set and Monte Carlo samples
- Trigger
- Object definitions and event
- Background determination
- Systematic uncertainties
- Statistical methods
- Results
- Interpretations

Events that are imitating the signal we are searching for or measuring.

Background determination specifics:

- Can/must be data-driven or simulation-based.
- Walidation regions" and "control regions" required. These can use different triggers wrt signal regions.

- Data-set and Monte Carlo
- Trigger
- Object definitions and eve
- Background determination
- Systematic uncertainties
- Statistical methods
- Results
- Interpretations

- Any 'intermediate' measurement we have performed carries uncertainties (statistical and systematic).
- Systematic" uncertainties are introduced by inaccuracies in the methods used to perform the measurement.
- Efficiencies, acceptance, number of events, luminosity, cross sections used in Monte Carlo scaling...
- Some of them are "centrally" assessed by the performance groups of an experiment. Some of them are analysis-specific.
- Data-set and Monte Carle
- Trigger
- Object definitions and even
- Background determinatio
 A
- Systematic uncertaintig
- Statistical methods
- Results
- Interpretations

Dealing with large data-sets, we use statistical methods to make sense of the numbers we measure.

Typical method:

Do a fit to extract signal from background.

Methodologies can vary a lot, but nowdays they are pretty unified within and across experiments.

- Data-set and Monte Carle
- Trigger
- Object definitions and even
- Background determinatio
 A
- Systematic uncertaintig
- Statistical methods
- Results
- Interpretations

Dealing with large data-sets, we use statistical methods to make sense of the numbers we measure.

Typical method:

Do a fit to extract signal from background.

Methodologies can vary a lot, but nowdays they are pretty unified within and across experiments.

Neural nets and other machine learning methods are broadly used, primarily to improve signal over background discrimination!

- Data-set and Monte Carlo samples
- Trigger
- Object definitions and event selections
- Background determination
- Systematic uncertainties
- Statistical methods
- Results
- Interpretations

Produce the results in tables and plots. These include details of what is found in the signal region.

- Data-set and Monte Carlo samples
- Trigger
- Object definitions and event selections
- Background determination
- Systematic uncertainties
- Statistical methods
- Results
- Interpretations]

Put the results into context: interpret them in theoretical models.

(INSTEAD OF) CONCLUSIONS

MEASURING Z⁰ CROSS-SECTION AT LHC

Run Number: 208781, Event Number: 39013006 Date: 2012-08-17 21:16:47 CEST

 \bigcirc

6

10 jets with pT > 50GeV **ME_T = 120 GeV**

IN A P-P COLLISION

MISSING TRANSVERSE MOMENTUM

Impossible to measure particles that don't interact in the detector.

➔ Instead, measure everything else & require momentum conservation in the transverse plane.

Sensitive to pile-up and detector problems.

Only as good as its inputs.

 Use calibrated physics objects: electrons, photons, muons, taus, jets.

Add remaining soft energy.

MISSING ET – PILEUP & TAILS

GRAND ATLAS (non-BSM) PHYSICS SUMMARY

	ATLAS	Prelimina	ary m _{top} s	ummary - O	ct. 2013, L _{int}	= 35 pb ⁻¹	- 4.7 fb ⁻¹	
2010, CONF-20	lepton+jets* 011-033, L _{int} = 35 pb ⁻¹				169.3	± 4.0		± 4.9
2011, Eur. Phys	lepton+jets s. J. C72 (2012) 2046, I	_{lot} = 1.04 fb ⁻¹			174.5	± 0.6 ±	0.4	± 2.3
2011, CONF-20	all jets* 012-030, L _{int} = 2.05 fb ⁻¹	81 B.			174.9	± 2.1		± 3.8
2011, CONF-20	dilepton* 012-082, L _{int} = 4.7 fb ⁻¹		•		175.2	± 1.6		$\pm \frac{3.1}{2.8}$
2011, CONF-20	lepton+jets* [*] 013-046, L _{int} = 4.7 fb ⁻¹)	172.3	1 ± 0.23 ± (0.27 ± 0.67	′ ± 1.35
2011, CONF-20	dilepton ^{*,©} D13-077, $L_{int} = 4.7 \text{ fb}^{-1}$	2012 (00)/5 0			173.09	9 ± 0.64 (stat.)	(JSF) (bJSF	± 1.50 (syst.)
172.6	5 ± 0.31 _{stat.} ± 1.	2013 (CONF-20 40 _{JSF⊕bJSF⊕s}	913-102) syst.	•••••		 stat. uncert stat. ⊕ JSF total uncert *Preliminar 	tainty ⊕ bJSF unce tainty ry, [©] Input com	ertainty 1b.
155	160	165	170	175	180	185	190	195 m _{ton} [GeV]

scale uncertainty scale+PDF uncertainty

 $179 \pm 4 \pm 9 \pm 7 \text{ pb}$

173 ± 6 + 14 + 8 / 7 pb

 $177 \pm 3^{+8}_{-7} \pm 7 \text{ pb}$

 $165 \pm 2 \pm 17 \pm 3 \text{ pb}$

194 ± 18 ± 46 pb

 $186 \pm 13 \pm 20 \pm 7 \text{ pb}$

 $168 \pm 12^{+60}_{-57} \pm 7 \text{ pb}$

300

250

3

stat, uncertainty total uncertainty

	ATLAS m _H = 125.8	5 GeV	+ σ σ σ	(stat) (<mark>sys)</mark> (theo)	Total uncertainty ± 1σ on μ
	Η → γγ	$\mu = 1.55^{+0.33}_{-0.28}$	±0.23 ±0.21 ±0.15		
	Low p _{Tt}	$\mu = 1.6^{+0.5}_{-0.4}$	±0.3		
」 5	High p _{Tt}	$\mu = 1.7_{-0.6}^{+0.7}$	±0.5		
	2 jet high mass (VBF)	$\mu = 1.9^{+0.8}_{_{-0.6}}$	±0.6		
	VH categorie	es $\mu = 1.3^{+1.2}_{-1.1}$	±0.9		
	H → ZZ* ·	\rightarrow 4 $\mu = 1.43^{+0.40}_{-0.35}$	±0.33 ±0.17 ±0.14		
	VBF+VH-like categories	$\mu = 1.2^{+1.6}_{-0.9}$	+ 1.6 - 0.9	••••	
	Other categories	$\mu = 1.45_{-0.36}^{+0.43}$	±0.35		
	H → WW'	$^{*} \rightarrow \mathbf{h} \mathbf{h} \mathbf{h}$ $\mu = 0.99^{+0.31}_{-0.28}$	±0.21 ±0.21 ±0.12		
	0+1 jet	$\mu = 0.82^{+0.33}_{-0.32}$	±0.22		
	2 jet VBF	$\mu = 1.4_{-0.6}^{+0.7}$	±0.5		B
	Comb. H→າ	γγ, ΖΖ*, WW* μ = 1.33 ^{+0.21} _{-0.18}	±0.14 ±0.15 ±0.11		
	√s = 7 TeV ∫L	dt = 4.6-4.8 fb	., ()	1 2 3
	√s = 8 TeV ∫L	dt = 20.7 fb ⁻¹			Signal strength (µ)

B-JET

TRIGGER MENUS FOR SUSY

Selection	EF trigger election	EF Avg. Rate (Hz) $L_{avrg}=5e33/cm^2s$
Single jet	Jet $E_{\rm T} > 145 {\rm ~GeV}$	8
$\frac{\& E_{\rm T}^{\rm mas}}{\rm Sincle int}$	$\frac{\& \text{ EF-only } E_{\text{T}}^{\text{mass}} > 70 \text{ GeV}}{\text{Let } E > 80 \text{ CeV}}$	
$\& E_{\rm T}^{\rm miss} \& \Delta \phi({\rm jet}, E_{\rm T}^{\rm miss})$	& $E_{\rm T}^{\rm miss}$ >70 GeV & $\Delta \phi$ >1.0 rad	8
H _T	>700 GeV	8
Single electron	Electron $p_{\rm T} > 25 {\rm ~GeV}$	26
$\& E_{\rm T}^{\rm miss}$	& EF-only $E_{\rm T}^{\rm miss}$ >35 GeV	20
Single muon	Muon $p_{\rm T} > 24 {\rm ~GeV}$	15
& single jet & $E_{\rm T}^{\rm miss}$	& jet $E_{\rm T} > 65 \text{ GeV}$ & EF-only $E_{\rm T}^{\rm miss} > 40 \text{ GeV}$	10
Single photon	Photon $p_{\rm T} > 40 {\rm ~GeV}$	5
$\& E_{\rm T}^{\rm miss}$	& EF-only $E_{\rm T}^{\rm miss}$ >60 GeV	5
3 electrons	$p_{\rm T} > 18, 2 \times 7 {\rm ~GeV}$	<1
3 muons	$p_{\rm T} > 18, 2 \times 4 {\rm ~GeV}$	<1
3 electrons & muons	$p_{\rm T} > 2 \times 7 \ (e), \ 6 \ (\mu) \ {\rm GeV}$	<1
	$p_{\rm T} > 7 \ (e), 2 \times 6 \ (\mu) \ {\rm GeV}$	<1

'DELAYED' TRIGGERS

Trigger	EF trigger Selection			
	Prompt Stream	Delayed Stream		
	4×80 GeV	4×65 GeV		
Multi-jets	5×55 GeV	5×15 GeV		
	6×45 GeV	JA45 00 V		
H _T	700 GeV	500 GeV		
Single jet ($R = 1.0$)	460 GeV	360 GeV		
$E_{ m T}^{ m miss}$	80 GeV	60 GeV		

STANDARD MODEL SUMMARY

THE SUSY MULTIJET SEARCH

Why $ME_T / \sqrt{H_T}$? \Rightarrow a measure of ME_T in units of standard deviations of the fake ME_T

$$\frac{\nabla_{p_{T}}}{p_{T}} = \frac{N}{p_{T}} \oplus \frac{S}{\sqrt{p_{T}}} \oplus C$$

MULTI-JET BACKGROUND

LEPTONIC BACKGROUNDS

- ◎ ttbar (non-full-hadronic) + jets and W/Z + jets.
- © Scale MC in control regions in data (through a multi-bin fit).

Single-lepton validation region				
Lepton $p_{\rm T}$	$> 25 \mathrm{GeV}$			
Lepton multiplicity	Exactly one, $\ell \in \{e, \mu\}$			
$E_{\rm T}^{\rm miss}$	$> 30 \mathrm{GeV}$			
$E_{\rm T}^{\rm miss}/\sqrt{H_{\rm T}}$	$> 2.0 \text{ GeV}^{1/2}$			
$m_{ m T}$	$< 120 {\rm GeV}$			
Jet $p_{\rm T}$				
Jet multiplicity	As for signal regions			
<i>b</i> -jet multiplicity	(table 1)			
M_J^{Σ}				
Control region (additional criteria)				
Jet multiplicity	Unit increment if $p_{\rm T}^{\ell} > p_{\rm T}^{\rm min}$			
$E_{\mathrm{T}}^{\mathrm{miss}}/\sqrt{H_{\mathrm{T}}~(+p_{\mathrm{T}}^{\ell})}$	$> 4.0 \text{ GeV}^{1/2}$			

Two-lepton validation region				
Lepton $p_{\rm T}$	$> 25 \mathrm{GeV}$			
Lepton multiplicity	Exactly two, ee or $\mu\mu$			
$m_{\ell\ell}$	$80{\rm GeV}$ to $100{\rm GeV}$			
Jet $p_{\rm T}$				
Jet multiplicity	As for signal regions			
<i>b</i> -jet multiplicity	(table 1)			
M_J^{Σ}				
Control region (additional criteria)				
$ \mathbf{p}_{\mathrm{T}}^{\mathrm{miss}}+\mathbf{p}_{\mathrm{T}}^{\ell_{1}}+\mathbf{p}_{\mathrm{T}}^{\ell_{2}} /\sqrt{H_{\mathrm{T}}}$	$> 4.0 \text{ GeV}^{1/2}$			

Incertainties dominating the leptonic background determination: JES/JER, b-tagging, pile-up and theory.

LEPTONIC BACKGROUND

THE STATISTICAL TREATMENT

Flavour stream

Simultaneous fit in the 'j50' and 'j80' signal regions separately.

- Itbar & W+jets: one control region per signal region.
 Normalization allowed to vary freely in the fit.
- Other less significant backgrounds; determined using MC. Constrained by their uncertainties.
- Multijet background; not constrained by control regions. Constrained by its uncertainties.

MJ stream

A fit performed in each signal region to adjust the normalization of ttbar and W backgrounds.

'Real models'

- O Scalar mass parameter, m₀
- O Gaugino mass parameter, m_{1/2}
- O Trilinear Higgs-sfermion-sfermion coupling, A₀
- O Ratio of Higgs vaccum expectation values, tanβ
- O Sign of SUSY Higgs parameter, sign(µ)

'Simplified models'

Simplified topologies with typically one production and one decay process. Provide useful information for theorists.

- Note that the multijet analysis is not optimized for a specific model, it is built to be as model-independent as possible.
- Multijet analysis is strong in other simplified models, e.g. gluino pair production via 2-step decay to 12 jets.

QCD BACKGROUNDS IN SUSY

All (SUSY) analyses use data-driven methods for assessing multijet SM production.

Monte Carlo can not be used when large multiplicities are involved:

- Inclusive multi-jet / multi-parton samples provided by Monte Carlo generators recently only.
 - E.g. only very latest Sherpa release provides NLO calculations up to four jets.
- Monte Carlo predictions have not yet been validated with multi-jet data.
- Detailed comparisons between data and various Monte Carlo generators and theoretical predictions would provide extremely useful input to the theory community in understanding QCD.
 - They would also provide a great understanding of a dominant SUSY background in view of run2.

E.G. FOUR-JET TOPOLOGIES & OBSERVABLES

Category	Variable
Simple kinematic & ratios	pΤ, η, φ, ΗΤ, ρ _{Τi} /p _{Tj}
Angles	$\Delta \eta_{ij}, \Delta \phi_{ij}, \Delta R_{ij}$
Masses & ratios	m _{ij} , m _{ijk} , m ₄ , m _i /m _{ij} , m _i /m _{ijk} , m _i /m ₄
Event shapes	$\Sigma p_T^2 / \Sigma p^2$

E.G. FOUR-JET TOPOLOGIES & OBSERVABLES

Name	Definition	Comment
$p_{\mathrm{T}i}$	Transverse momentum of the <i>i</i> th jet	Sorted descending in $p_{\rm T}$
Y_i	Rapidity of the <i>i</i> th jet	
H_{T}	$\sum_{i=1}^{4} p_{\mathrm{T}_{i}}$	Scalar sum of the $p_{\rm T}$ of the four jets
$M_{ m jjjj}$	$\left(\sum_{i=1}^{4} E_i\right)^2 - \left(\sum_{i=1}^{4} \mathbf{p}_i\right)^2$	Invariant mass of the four jets
$M_{ m jj}^{ m min}$	$\min_{\substack{i,j\in[1,4]\\i\neq j}}\left(\left(E_i+E_j\right)^2-\left(\mathbf{p}_i+\mathbf{p}_j\right)^2\right)$	Minimum invariant mass of any two jets
$\Delta \phi_{ij}^{ m min}$	$\min_{\substack{i,j\in[1,4]\\i\neq j}} \left(\phi_i - \phi_j \right)$	Min azimuthal separation of two jets
ΔY_{ij}^{\min}	$\min_{\substack{i,j\in[1,4]\\i\neq j}} \left(Y_i - Y_j \right)$	Min rapidity separation of two jets
$\Delta \phi^{ m min}_{ijk}$	$\min_{\substack{i,j,k\in[1,4]\\i< j< k}} \left(\Delta\phi_{ij} + \Delta\phi_{jk} \right)$	Min azimuthal separation between three jets
ΔY^{\min}_{ijk}	$\min_{\substack{i,j,k\in[1,4]\\i< j< k}} \left(\Delta Y_{ij} + \Delta Y_{jk} \right)$	Min rapidity separation between three jets
ΔY_{ij}^{\max}	$\Delta Y_{ij}^{\max} = \max_{i,j \in [1,4]} \left(Y_i - Y_j \right)$	Max rapidity difference between two jets
$\Sigma p_{\mathrm{T}}^{\mathrm{central}}$	Sum of $p_{\rm T}$ of the two central-rapidity jets	Excludes jets having $\Delta Y_{ij}^{\text{max}}$

E.G. FOUR-JET MONTE CARLO SAMPLES

Name	Hard process	PDF	Parton shower	Underlying event	Tune
Pythia8-CT10	PYTHIA 8	CT10	PYTHIA 8	PYTHIA 8	AU2-CT10
Pythia8-CTEQ6L1	PYTHIA 8	$CTEQ6L1(\dagger)$	PYTHIA 8	PYTHIA 8	AU2-CTEQ6L1
Herwig++	Herwig++	CTEQ6L1	Herwig++	Herwig++	UE-EE-3-CTEQ6L1
Alpgen+Herwig	Alpgen	CTEQ6L1	HERWIG6	JIMMY	AUET2-CTEQ6L1
Alpgen+Pythia	Alpgen	CTEQ6L1	PYTHIA 6	PYTHIA 6	Perugia 2011C
Madgraph+Pythia	Madgraph	CTEQ6L1	PYTHIA 6	PYTHIA 6	AUET2B-CTEQ6L1
Sherpa	Sherpa		Sherpa	Sherpa	

Table 2: The different Monte Carlo generators used for comparison against the data are listed, together with the parton distribution functions, parton shower algorithms, underlying event and parameter tunes. (†) The Pythia8-CT6L1 sample uses CT10 when calculating the Matrix Element but CTEQ6L1 when simulating the parton shower and underlying event. The first listed sample (Pythia8-CT10) is used for the deconvolution of detector effects.

THE ATLAS TRIGGER SYSTEM

Multijet trigger improvements in 2012

TRIGGER

Signal triggers				
Jet Multiplicity	pT cut	η		
6	45			
5	55	3.2		

Background/support triggers				
Туре	Purpose			
Multijet (prescaled)	Efficiencies & Control regions			
Single lepton	Control regions			

THE BENEFITS

THE CHALLENGES

The calorimeter

Simulated noise in the Liquid Argon and Tile calorimeters at the electron scale

107

THE 'SOLUTIONS'

Detector extensions, e.g. extra muon chambers at $1.0 < |\eta| < 1.3$.

Ongoing trigger upgrade that will:

- **Increase the peak L1 rate to 100kHz.**
- Provide possibility to select on combined L1 quantities (angles, masses, etc).
- **©** Provide tracks at the input of the HLT for better object ID.
- Insure more efficient and flexible HLT reconstruction with a merged (L2 & EF) HLT.

Clever ideas for better & more robust object reconstruction.
THE PROSPECTS

THE PROSPECTS

BACKGROUNDS & DETERMINATION

BACKGROUNDS & DETERMINATION

Non-full hadronic ttbar & V+jets

 Extracted from MC normalized on data.
Uncertainties: JES/JER, b-tagging, pileup and theory.

THE SUSY MULTIJET SEARCH

Dominant background: SM multijet production; fake MET from jet mis-measurements. Estimated using a combination of data-driven methods and Monte-Carlo based methods. Validated in control regions. *Typical treatment of (SUSY) searches.*

 $\begin{array}{ll} \textbf{Why ME_T/\sqrt{H_T ?}} \\ \Rightarrow \text{ a measure of ME}_{\text{T}} \text{ in units of} \\ \text{standard deviations of the fake ME}_{\text{T}} \end{array} \quad \frac{\sigma_{\text{PT}}}{p_{\text{T}}} = \frac{N}{p_{\text{T}}} \oplus \frac{S}{\sqrt{p_{\text{T}}}} \oplus C \end{array}$