The electroweak interactions and the Higgs phenomenon

Riccardo Barbieri
CERN Summer Student Lectures
July 9-13, 2018

Can one "INVENT" a new interaction?

What determines the range of the weak interactions?

What makes our mass budget?

What about the Lorentz symmetry?

Under Lorentz: $\mathrm{J}=0,1 / 2,1$ for h, Ψ, A_{μ}
However for a charged $J=1 / 2$ particle

$$
\Psi(x)=\Psi_{L}(x)+\Psi_{R}(x) \quad \text { "L-R chirality" }
$$

with Ψ_{L} and Ψ_{R} transforming independently under Lorentz
As such, Ψ_{L} and Ψ_{R} can transform differently under the "internal" symmetry group

They do not in QCD and QED (hence P and C conserved, see below)

1. massive (charged or neutral) $=$ "Dirac" $\quad \Psi=\Psi_{L}+\Psi_{R}, \bar{\Psi}=\bar{\Psi}_{L}+\bar{\Psi}_{R}$

$$
\Psi(\Uparrow \Downarrow) \neq \bar{\Psi}(\Uparrow \Downarrow)
$$

2. massless (neutral) $=$ "Weyl" $\quad \nu=\nu_{L}, \quad \bar{\nu}=\bar{\nu}_{R} \quad$ (chirality = "helicity")

$$
\nu(\Leftarrow) \neq \bar{\nu}(\Rightarrow)
$$

How to "INVENT" a new interaction 1

Back to radioactivity (1896) in modern language

$\mathcal{L}_{F}=\frac{G_{F}}{\sqrt{2}}\left(\bar{u}_{L} \gamma_{\mu} d_{L}\right)\left(\bar{e}_{L} \gamma_{\mu} \nu_{L}\right)^{\frac{G_{F}}{\sqrt{2}}}=\frac{g^{2}}{8 m_{W}^{2}} \mathcal{L}_{W}=\frac{g}{\sqrt{2}} W_{\mu}\left(\bar{u}_{L} \gamma_{\mu} d_{L}+\bar{\nu}_{L} \gamma_{\mu} e_{L}\right)$
To mimic a gauge interaction $\quad \mathcal{L}_{I}=g A_{\mu}^{a} \bar{\Psi} \gamma_{\mu} t^{a} \Psi, \quad\left[t^{a}, t^{b}\right]=i f^{a b c} t^{c}$ define

$$
\begin{array}{ccc}
Q=\binom{u_{L}}{d_{L}} \quad L=\binom{\nu_{L}}{e_{L}} & J_{\mu}^{ \pm}=\bar{Q} \gamma_{\mu} \frac{\sigma^{ \pm}}{2} Q+\bar{L} \gamma_{\mu} \frac{\sigma^{ \pm}}{2} L \\
\sigma^{ \pm}=\frac{1}{\sqrt{2}}\left(\sigma_{1} \pm i \sigma_{2}\right) & \sigma_{1}=\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right) & \sigma_{2}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right) \quad \sigma_{3}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
\end{array}
$$

$$
\mathcal{L}_{W}=\frac{g}{\sqrt{2}}\left(W_{\mu}^{+} J_{\mu}^{-}+W_{\mu}^{-} J_{\mu}^{+}\right)
$$

How to "INVENT" a new interaction 2

$$
\mathcal{L}_{W} \equiv \mathcal{L}^{(0)}=g\left(W_{\mu}^{+} J_{\mu}^{-}+W_{\mu}^{-} J_{\mu}^{+}\right) \quad J_{\mu}^{ \pm}=\bar{Q} \gamma_{\mu} \frac{\sigma^{ \pm}}{2} Q+\bar{L} \gamma_{\mu} \frac{\sigma^{ \pm}}{2} L
$$

"To close the algebra" $\left[\sigma_{1}, \sigma_{2}\right]=2 i \sigma_{3}$ need to introduce a new interaction

$$
\mathcal{L}^{(1)}=g W_{\mu}^{3} J_{\mu}^{3} \quad J_{\mu}^{3}=\bar{Q} \gamma_{\mu} \frac{\sigma^{3}}{2} Q+\bar{L} \gamma_{\mu} \frac{\sigma^{3}}{2} L
$$

Can we identify W_{μ}^{3} with the photon A_{μ} ?

$$
\begin{array}{ll|c|c|c|c|c|c|c}
J_{\mu}^{3} \equiv \bar{\Psi} \gamma_{\mu} T_{L}^{3} \Psi & & u_{L} & u_{R} & d_{L} & d_{R} & e_{L} & e_{R} & \nu_{L} \\
\cline { 2 - 6 } & T_{L}^{3} & 1 / 2 & 0 & -1 / 2 & 0 & -1 / 2 & 0 & 1 / 2 \\
\mathcal{L}_{I}^{e m}=e A_{\mu} \bar{\Psi} \gamma_{\mu} Q_{e m} \Psi & & u_{L} & u_{R} & d_{L} & d_{R} & e_{L} & e_{R} & \nu_{L} \\
\hline & Q_{e m} & 2 / 3 & 2 / 3 & -1 / 3 & -1 / 3 & -1 & -1 & 0
\end{array}
$$

NO! $T_{L}^{3} \neq Q_{e m}$ Furthermore

$$
e^{i \alpha_{j} \sigma_{j} / 2}=S U(2) \quad \text { matrices, BUT }
$$

$$
Q_{e m} \sigma^{+} L \neq \sigma^{+} Q_{e m} L \quad \Rightarrow\left[Q_{e m}, \sigma^{+}\right] \neq 0
$$

The algebra still not closed!

How to "INVENT" a new interaction 3

To improve the situation, consider

$\mathcal{L}_{I}^{B}=g^{\prime} B_{\mu} \bar{\Psi} \gamma_{\mu} Y \Psi \quad$| | u_{L} | u_{R} | d_{L} | d_{R} | e_{L} | e_{R} | ν_{L} |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Y | $1 / 6$ | $2 / 3$ | $1 / 6$ | $-1 / 3$ | $-1 / 2$ | -1 | $-1 / 2$ |

with B_{μ} a new boson and its associated $U(1)_{Y}$

$$
Q=T_{L}^{3}+Y, \quad\left[Y, \sigma_{i}\right]=0 \quad \Rightarrow S U(2) \times U(1)_{Y}
$$

Does it work? Suppose that (to be explained in a while)
$W_{\mu}^{3}=\sin \theta A_{\mu}+\cos \theta Z_{\mu}, \quad B_{\mu}=\cos \theta A_{\mu}-\sin \theta Z_{\mu}$
$\tan \theta \equiv \frac{g^{\prime}}{g}$
Then

$$
\mathcal{L}^{(1)}+\mathcal{L}_{I}^{B}=e A_{\mu} J_{\mu}^{e m}+\frac{g}{\cos \theta} Z_{\mu} J_{\mu}^{(Z)}
$$

with

$$
J_{\mu}^{(Z)}=\bar{\Psi}\left(T_{L}^{3}-\sin ^{2} \theta Q_{e m}\right) \Psi=\frac{1}{2} \bar{\nu}_{L} \gamma_{\mu} \nu_{L}+\ldots
$$

The discovery of "neutral currents"

The "charged current" interaction

The electromagnetic interaction

The "neutral current" interaction (predicted)

CERN 1973: a "bubble chamber" event

The full gauge Lagrangian (a recap)

Gauge symmetry: $\quad S U(3) \times S U(2) \times U(1)_{Y}$

$$
\begin{gathered}
A_{\mu}^{A}=\left(G_{\mu}^{\alpha} ; W_{\mu}^{a} ; B_{\mu}\right) \quad \mathcal{F}_{\mu \nu} \mathcal{F}_{\mu \nu} \equiv G_{\mu \nu}^{\alpha} G_{\mu \nu}^{\alpha}+W_{\mu \nu}^{a} G_{\mu \nu}^{a}+B_{\mu \nu} B_{\mu \nu} \\
\Psi=Q(\mathbf{3}, \mathbf{2})_{1 / 6} u_{R}(\overline{\mathbf{3}}, \mathbf{1})_{2 / 3} d_{R}(\overline{\mathbf{3}}, \mathbf{1})_{-1 / 3} L(\mathbf{1}, \mathbf{2})_{-1 / 2} e_{R}(\mathbf{1}, \mathbf{1})_{-1}
\end{gathered}
$$

Most general $\quad \mathcal{L}^{(\leq 4)}$

$$
\begin{gathered}
\mathcal{L}=-\frac{1}{4} \mathcal{F}_{\mu \nu} \mathcal{F}_{\mu \nu}+i \bar{\Psi} \not D \Psi \\
\not D=\gamma_{\mu} D_{\mu}=\gamma_{\mu}\left(\partial_{\mu}+g_{s} G_{\mu}^{\alpha} \frac{\lambda^{\alpha}}{2}+g W_{\mu}^{a} \frac{\sigma^{a}}{2}+g^{\prime} B_{\mu} Y\right)
\end{gathered}
$$

Realistic?
No mass term allowed fermions $\quad m \bar{\Psi} \Psi=m \bar{\Psi}_{L} \Psi_{R}=\mathbf{2} \times \mathbf{1} \nsupseteq \mathbf{1}$ by the gauge symmetry vectors $m^{2} A_{\mu} A_{\mu}$ against g.i. $A_{\mu} \rightarrow A_{\mu}+\partial_{\mu} \alpha(x)$

Add a scalar $\quad h=(\mathbf{1}, \mathbf{2})_{-1 / 2} \quad \mathcal{L}_{Y}=\lambda h \bar{\Psi}_{L} \Psi_{R}=\mathbf{2} \times \mathbf{2} \times \mathbf{1} \supset \mathbf{1}$

The SM Lagrangian

$$
\mathcal{L}_{\sim S M}=-\frac{1}{4} F_{\mu \nu}^{a} F^{a \mu \nu}+i \bar{\psi} \not \supset \psi
$$

$$
+\left|D_{\mu} h\right|^{2}-V(h)
$$

new!
where

$$
+\psi_{i} \lambda_{i j} \psi_{j} h+h . c .
$$

$$
\begin{gathered}
h=\binom{h_{1}}{h_{2}}=\binom{h^{0}}{h^{-}} \quad D_{\mu} h=\left(\partial_{\mu}+g W_{\mu}^{a} \frac{\sigma^{a}}{2}-g^{\prime} \frac{1}{2} B_{\mu}\right) h \\
V(h)=-\mu^{2}|h|^{2}+\lambda\left(|h|^{2}\right)^{2} \quad|h|^{2}=h_{1}^{*} h_{1}+h_{2}^{*} h_{2} \\
\Psi_{i} \lambda_{i j} \Psi_{j}=h \bar{Q}_{L_{i}} \lambda_{i j}^{u} u_{R_{j}}+h^{+} \bar{Q}_{L_{i}} \lambda_{i j}^{d} d_{R_{j}}+h^{+} \bar{L}_{L_{i}} \lambda_{i j}^{e} e_{R_{j}}
\end{gathered}
$$

Spontaneous breaking of the EW symmetry

E^{\prime} il vuoto, bellezza!

Energy

symmetric maximum

The Higgs
the "Higgs excitation"

condensate
$V(h)=-\mu^{2}|h|^{2}+\lambda\left(|h|^{2}\right)^{2}$
At the minimum $<h>$

$$
\begin{aligned}
& |<h>|^{2}=\frac{\nu^{2}}{2 \lambda} \equiv v^{2} \\
& \quad<h>=\binom{v}{0} \\
& h \rightarrow e^{i \chi_{a} \sigma_{a} / 2}\binom{v+\frac{H}{\sqrt{2}}}{0}
\end{aligned}
$$

Consequences:

1. $Q_{e m}<h>=0 \Rightarrow S U(2) \times U(1)_{Y} \rightarrow U(1)_{e m}$
2. The "radial excitation", the Higgs boson, gets mass $m_{H}=2 \sqrt{\lambda} v$
3. The Yukawa couplings give fermions a mass

$$
\text { E.g. } \quad \lambda^{u} h \bar{Q}_{L} u_{R} \rightarrow \lambda^{u}\left(v+\frac{H}{\sqrt{2}}\right) \bar{u}_{L} u_{R}
$$

Note the linear relation between the mass $m_{u}=\lambda^{u} v$ and the coupling λ^{u}

At the minimum $<h>$

$$
\begin{aligned}
& |<h>|^{2}=\frac{\nu^{2}}{2 \lambda} \equiv v^{2} \\
& \quad<h>=\binom{v}{0} \\
& h \rightarrow e^{i \chi_{a} \sigma_{a} / 2}\binom{v+\frac{H}{\sqrt{2}}}{0}
\end{aligned}
$$

Further consequences:
4. The vectors of $S U(2) \times U(1)_{Y}$, all but the photon, get a mass
$\left|D_{\mu}<h>\right|^{2} \Rightarrow m_{W^{ \pm}}^{2}=g^{2} v^{2} / 2, \quad m_{Z}^{2}=m_{W^{ \pm}}^{2} / \cos ^{2} \theta$

$$
A_{\mu}=\sin \theta W_{\mu}^{3}+\cos \theta B_{\mu}, \quad Z_{\mu}=\cos \theta W_{\mu}^{3}-\sin \theta B_{\mu}, \quad \tan \theta=g^{\prime} / g
$$

5. Range of the weak versus em interactions:

6. What about the three χ_{a} ?

The linear relation between masses and Higgs couplings

Do we see virtual particle effects here as well?

Blue $=$ prediction of m_{t}, M_{W} by fitting various ew data in the theory, with crucial inclusion of the loop effects above
Green $=$ direct measurements of m_{t}, M_{W}

Our mass budget

We are made of

$$
e, p \text { (mostly uud), n (mostly odd) }
$$

$\Delta m_{u s} \approx 1 \%$ from the Higgs vacuum

$$
\begin{aligned}
& m_{e}=\lambda_{e} v=0.510998928(11) \mathrm{MeV} \\
& m_{u}=\lambda_{u} v=2.3 \pm 0.7 \mathrm{MeV} \\
& m_{d}=\lambda_{d} v=4.8 \pm 0.5 \mathrm{MeV}
\end{aligned}
$$

$\Delta m_{u s} \approx 99 \%$ from back reaction to QCD forces

$$
\begin{aligned}
& \quad E=m c^{2} \quad \text { YES! } \\
& m_{p}=938.272046(21) \mathrm{MeV} \\
& m_{n}=939.565379(21) \mathrm{MeV}
\end{aligned}
$$

Experiment
Theory

\downarrow

$\Rightarrow \quad v=175 G e V$

∇

But if the SM
$?$ is naively extrapolated at high energies
$\Rightarrow \quad v \approx 10^{18} G e V$

