

FoCal

a highly granular digital calorimeter

Naomi van der Kolk

FoCal

a highly granular digital calorimeter

Naomi van der Kolk

0.52 mm² pads

FoCal

a highly granular digital calorimeter

Naomi van der Kolk

0.52 mm² pads

FoCal

a highly granular digital calorimeter

Naomi van der Kolk

30x30 µm² pixels

FoCal

a highly granular digital calorimeter

Naomi van der Kolk

- Measure Parton Density Functions (PDF) at low parton momentum fraction by measuring the **yield of direct photons** at forward rapidities in pp and p-Pb collisions
- Forward calorimeter: FoCal
- Main challenge: separate direct photons from decay photons from π^0 : e.g. the distance between the decay products of a π^0 $(p_T = 10 \text{ GeV/c}, y = 4.5, a = 0.5) \text{ is } 2 \text{ mm!}$
- Need highly granular readout and a small Molière radius
- Silicon-Tungsten sandwich with effective granularity of 1 mm² or better
- Positioned outside the solenoid at $z \sim 7 m$, $3.3 < \eta < 5.3$
 - backed by a hadronic calorimeter FoCal-H (photon isolation)
 - unobstructed view: forward region not instrumented in ALICE

electromagnetic probes

N. van der Kolk

FoCal

FoCal-E Strawman Design

- 1 m² surface 20 layers of 3.5 mm W and Si sensors
- Hybrid design with 2 types of sensors:
 - Si pads (LG) of ~1 cm² for energy measurement and timing (?), development lead by Japan and India
 - **CMOS pixels** (HG) of ~ $30x30 \mu m^2$ for two \bullet shower separation and position resolution, development lead by UU/Nikhef and Bergen

Digital calorimeter prototype

- **Digital ECAL**: number of pixels above threshold ~ deposited energy
 - Monolithic Active Pixel Sensors (MAPS) \bullet PHASE2/MIMOSA23 with a pixel size: 30x30 µm²
 - 24 layers of 4 sensors each: active area 4x4 cm², **39 M pixels** 3 mm W absorber for 0.97 X₀ per layer **R**_M ~ **11** mm

• Worldwide unique calorimeter

- Demonstrate digital calorimetry and pixel sensors in a calorimeter application
- Ideal detector for studying particle showers in detail with respect to shower models in MC simulations

15th Vienna Conference on Instrumentation

Performance published in JINST 13 (2018) P01014

3 x PhD thesis

Martijn Reicher: "Digital Calorimetry Using Pixel Sensors" **Chunhui Zhang:** "Measurements with a High-Granularity Digital Electromagnetic Calorimeter" Hongkai Wang: "Prototype Studies and Simulations

for a Forward Si-W Calorimeter at the Large Hadron Collider"

FoCal

N. van der Kolk

- Excellent 2-shower separation possible
- Single shower position resolution ~ pixel size

Position resolution

N. van der Kolk

5

Good linearity of the response

15th Vienna Conference on Instrumentation

Energy resolution

Longitudinal profiles

- Average hit density as a function of depth for different radial positions
 - Large dynamical range
 - Maximum hit density for increasing ring radius
 - Saturation in shower core <0.1 mm at high energies

15th Vienna Conference on Instrumentation

N. van der Kolk

- Currently building new prototypes based on the **ALPIDE MAPS sensor** that is developed for the new ALICE Inner Tracking System
- New prototype **mTower**
 - Small digital calorimeter (3x3 cm²) with 24 layers of 2 ALPIDE sensors and 3 mm W
 - Allows to test the performance of the ALPIDE in a calorimeter
 - Provides input into the FoCal design parameters
 - Allows to study particle showers in detail

- Monolithic Active Pixel Sensor •
- Chip size: 30.00 mm x 15.00 mm
- Pixel matrix: 1024 x 512 (=524288 pixels / chip)
- Active area: 29.94 mm x 13.76 mm •
- Pixel size: 29.24 µm x 26.88 µm
- Hit driven readout •
- Readout speed: 400 Mb/s 1.2 Gb/s •
- Power consumption proportional to the occupancy. •

FoCal

N. van der Kolk

- Layer: W absorber and two ALPIDE chips
- Thin, compact cabling to keep small Molière radius
 - Chip-cable and multilayered flex of AI-Pi adhesive-less foiled dielectrics
 - Chip-cable for the MAPS to flex connection
 - Assembly techniques: SpTAB and gluing, soldering for SMD components

m Tower layers

FoCal

N. van der Kolk

- Design ready
- 2 layers tested at PS and SPS
- Performance tests with 4 layers ongoing, at Utrecht and Bergen: some issues when pixel matrix active
- Same readout boards as ALICE ITS upgrade

m Tower status

N. van der Kolk

- New prototype mFoCal
 - Combine ALPIDE layers (HG) with PAD layers (LG)
 - 3 slabs of 3x9 ALPIDE sensors on each side (54 sensors/slab)
 - Allows to test FoCal design (mechanical integration, cabling, cooling, readout synchronisation, scalability to full detector)
 - Allows to test performance of FoCal-E

mFoCa

FoCal

N. van der Kolk

mFoCal status

- MAPS layers design ready

15th Vienna Conference on Instrumentation

Mechanical tests ongoing (gluing, cooling, etc.)

First functional 9-string (2 chips mounted) tested, some performance issues, revision of chip cable design ongoing

• PADS have been tested in ALICE cavern

FoCal

N. van der Kolk

- 2 layers of 2 ALPIDE chips at PS and SPS
- Most of the time positioned behind the FoCal PADS, but also some time directly in the beam
- Readout with RUv1 for ITS
 - data recorded could coincide with the beam
 - Could read out only maximally 2 chips at the same time
- Data analysis still ongoing...

No external trigger input possible -> Blind data taking -> At most 20% of SPS

N. van der Kolk

- Electron beam
- Behind PADS (effectively 66.5 mm W ~ 19 X_0) 50, 100, 110, 120, 150, 180, 250 GeV
- Directly in beam with 0, 20 (~5.7 X_0), 28 (~8 X_0) mm W in front 50, 100, 150 GeV
- Total of **580 Million events** recorded at SPS, but only small (still unknown) number of events with beam particles

Data sets SPS

N. van der Kolk

- Investigating the nature of the events: noise or electron?
- Exclude "hot" pixels (only 2 for this chip)
- Cut on a minimum number of hits
- Some examples of electrons @ 150 GeV on the next slides

Event selection

Number of hits per event

event number

N. van der Kolk

FoCal

ALICE

15th Vienna Conference on Instrumentation

Number of hits and Hit maps

FoCal

N. van der Kolk

Mean and Spread hit position

15th Vienna Conference on Instrumentation

N. van der Kolk

Occupancy below 2% with 28 mm W at 150 GeV \bullet

15th Vienna Conference on Instrumentation

• Mean cluster size ~4 - 5

15th Vienna Conference on Instrumentation

Cluster size

N. van der Kolk

- MAPS technology as pioneered for FoCal has the potential for:
 - medical applications: proton CT uses same design as for mFoCal
 - next generation LHC heavy ion experiment
 - calorimetry for future detectors CALICE R&D \bullet

Future perspectives

Shower Pixel Detector

N. van der Kolk

- Forward direct photon measurements in ALICE will constrain PDFs and provide information on gluon saturation
- **R&D ongoing** for MAPS and PAD based detector
 - First MAPS prototype demonstrated digital calorimetry with MAPS sensors
 - New MAPS prototypes being built based on ALPIDE sensor to test FoCal-E design
- FoCal is awaiting ALICE collaboration approval
 - TDR early 2020 -> start production in 2022 -> Installation foreseen in 2024

Summary and Outlook

Thank you for your attention

In collaboration with groups in Japan (Tsukuba, Nara, Hiroshima, Tokyo) and India (Kolkata, Mumbai) for the PADs In collaboration with the pCT group in Bergen for the MAPS

15th Vienna Conference on Instrumentation

Rene Barthel - Ton van den Brink - Naomi van der Kolk - Marco van Leeuwen Gert-Jan Nooren - Norbert Novitzky - Thomas Peitzmann - Hiroki Yokoyama

Netherlands Organisation for Scientific Research

FoCal

N. van der Kolk

- Monolithic Active Pixel Sensor
- Chip size: 19.52 mm x 20.93 mm
- Pixel matrix: 640 x 640 pixels (=409600/chip)
- Active area: 19.2 mm x 19.2 mm
- Pixel size: 30 µm x 30 µm
- Readout frequency: 160 MHz
- 1 MHz rolling shutter, 640 µs integration time

N. van der Kolk

Motivation for FoCal

- Parton Density Functions (PDF) determined experimentally (mainly DIS), extrapolation with **linear QCD evolution** (DGLAP): $f = f(x,Q^2)$
- For small x and intermediate/large Q²: high gluon density observed in DIS
 - Growth of number of gluons towards small x cannot continue indefinitely: non-linear effects -> gluon saturation
 - Interesting physics state: classical colour field
 - Non-linear effects expected to be even larger in nuclei -> Nuclear modification factor R
- Due to lack of data PDF experimentally not constrained at low x (x < 10^{-2} in nuclei)
- PDFs accessible at hadron colliders x_{min} = 2p_T/sqrt(s) e^{-y}
 - Most interesting: forward particle production at LHC
 - **Direct photons** theoretically cleanest probe

15th Vienna Conference on Instrumentation

FoCal

N. van der Kolk

Performance

• FoCal performance in simulations: direct y reconstruction

 Background suppression factor ~ 10, largely p_T independent through combined rejection (invariant mass + shower shape + isolation cut)

• direct $\gamma/all > 0.1$ for $p_T > 4$ GeV/c

• Forward photons can significantly decrease uncertainties

Performance estimate of FoCal measurement

15th Vienna Conference on Instrumentation

Impact on nPDFs

N. van der Kolk

Longitudinal profiles

- Based on the integral of the hit density
- Normalised distributions
- Deeper showers at higher energies

15th Vienna Conference on Instrumentation

N. van der Kolk

Radial profiles

N. van der Kolk

