

Monica Pepe INFN Perugia

on behalf of the NA62 Collaboration

Birmingham, Bratislava, Bristol, Bucharest, CERN, Dubna (JINR), Fairfax, Ferrara, Florence, Frascati, Glasgow, Lancaster, Liverpool, Louvain-la-Neuve, Mainz, Moskow (INR), Naples, Perugia, Pisa, Prague, Protvino (IHEP), Rome I, Rome II, San Luis Potosí, Sofia, TRIUMF, Turin, Vancouver (UBC)

15TH VIENNA CONFERENCE ON INSTRUMENTATION

- The NA62 experiment
- ***** The RICH detector
- Latest RICH performance results
- Conclusions

The NA62 Experiment @ CERN

Broad physics program

- \blacktriangleright Rare K⁺ decays
- \succ LNV-LFV in K⁺ decays
- Hidden sector particles

Future plans: Run 3 (2021-2023)

NAG

- \triangleright Complete $\pi^+ vv$ measurement
- Address new physics cases:
- LFV/LNV measurements, rare decays
- Dump mode \rightarrow MeV-GeV mass hidden-sector

⇒ Dark Photons, Heavy Neutral Leptons, Axions/Axion-Like-Particles, etc

2012-2014 Installation	2014 Pilot run	2015 Commissioning	2016 Final Commissioning Physics run (30 days)	2017 Physics run (160 days)	2018 Physics run (217 days)	2019-2020 LS2
2016: 40% of nominal intensity $\rightarrow 5 \times 10^{11} \text{ K}^+$ decays 2017-18: 60% of nominal intensity $\rightarrow 8 \times 10^{12} \text{ K}^+$ decays				1 K ⁺ $\rightarrow \pi^+ v \overline{v}$ event observed Expected Background: $0.15 \pm 0.09_{stat} \pm 0.01_{syst}$		
				SES: (3.15 ± <i>arXiv:1811</i>	• 0.01_{stat} ± 0.24_{syst} .08508 (accepted) × 10 ⁻¹⁰ ' by PLB)

The NA62 Detector

Primary beam: CERN SPS protons

- 400 GeV/c
- 3.3 × 10¹² ppp

Secondary beam:

- unseparated positive beam $\pi(70\%)/K(6\%)/p(23\%)$
- $p_{K} = 75 \text{ GeV/c} (\Delta p/p \sim 1.1\%)$
- Nominal beam rate = 750 MHz@GTK
- K⁺ rate \approx 45 MHz
- ~5 MHz K⁺ decays in the fiducial volume

Main Detectors

- Tracking: Si-pixel beam tracker (GTK) + Straw spectrometer in vacuum (STRAW)
- PID: Cherenkov for K⁺ beam (KTAG) and for decay products (RICH)
- Hermetic veto: Photon-veto/calorimeters + muon veto system
- **CHANTL**: inelastic interactions of beam and collimator/GTK3
- **CHOD:** plastic scintillators for fast charged trigger

NA62 and RICH requirements

NA62 Requirements

- > O(10%) signal acceptance
- $>10^{13}$ Kaon decays in fiducial volume
- > O(10¹²) background rejection

- Rejection of $K^+ \rightarrow \mu^+ v_{\mu} O(10^{11})$
- \succ Kinematic cuts: O(10⁴)
- \triangleright PID in calorimeters: >10⁵
- \geq PID in RICH >10²

RICH Requirements

- > Muon mis-ID at 10⁻² level in $15 < P_{\pi^+} < 35 \text{ GeV/c}$
- > Measure pion crossing time with a resolution ~ 100 ps
- Provide a L0 trigger for charged tracks

The NA62 RICH layout

VCI 15th, Vienna Feb 18-22, 2019

Monica Pepe - INFN Perugia

RICH vessel and radiator

VESSEL

- Vacuum proof tank
- 17 m long made of structural steel
- 4 longitudinal cylindrical sections: decreasing diameter (4→3.4 m) and different lengths
- beam pipe (Ø 168 mm) passing through
- thin Al entrance and exit windows

RADIATOR

- Neon gas slightly above atmospheric pressure
- refractive index (n-1) = 62.8 10⁻⁶ at λ =300 nm
- low chromatic dispersion
- Cherenkov threshold $p = 12.5 \text{ GeV/c for } \pi$
- low atomic number: $\theta_{Cmax} = 11.2 \text{ mrad}$
- good light transparency in visible and near-UV

Gas Analysis

November 2015

December 2017

June 2017

June 2018

0,

(ppmV)

100

70-80

93

73

RICH performance rather immune to impurities

- no purification/recirculation system [IEEE Trans.Nucl.Sci 60 (2013) 1, 265]
- fresh neon injected after vessel evacuation:
- > first fill in 2014, refill in 2016 after maintenance
- > small top-up refill time by time
- gas analysis time by time

Monica Pepe - INFN Perugia

H₂O

(ppmV)

~350

~100

~500

566

RICH mirror system and mechanics

• Radius of curvature (34 ± 0.2) m

INFŃ

• 2.5 cm thick glass, Al coat + thin dielectric film MgF₂

• Average reflectivity ~90% in λ (195-650) nm , D₀ < 4 mm

• Mirrors individually supported by a back dowel connected to the panel

- Two thin Al ribbons keep the mirror in equilibrium allowing its orientation
- A third vertical ribbon is used to avoid mirror rotations
- Remote control of mirror orientation through 38 Piezo motor actuators for alignment

[D. Aisa et al., JINST 12 P12017 (2017)]

Aluminium honeycomb support structure 5 cm thick, two halves

Mirror alignment

Preliminary laser alignment

- done before vessel closing
- precision O(500) µrad in terms of mirror orientation

Final alignment with 2016 data

- Single-Track events reconstructed by spectrometer
- Select rings fully contained in a single mirror
- Semi-hexagonal mirrors used as reference
- precision O(30) µrad in terms of mirror orientation
- Iterative procedure
- Compare ring center position on the PMT plane to the position predicted by track extrapolation
 - → Align each mirror using piezomotors

Photodetection system

- Cherenkov light collected by 1952 PMTs with 18 mm pixel size
- Hamamatsu R7400U-03
- Two aluminium disks placed at the upstream endcap
- Winston Cones with aluminized Mylar to optimize light collection
- 1 mm thick quartz windows to separate Neon from air
- Custom made HV divider
- No PMT replaced after 2014

VCI 15th, Vienna Feb 18-22, 2019

Hamamatsu R7400U-03 PhotomultipliersSensitivity range 185-650 nm (420 nm peak)Gain 1.5 × 10⁶ at working point = 900 VUV glass window, 16 mm Ø (photocatode 8 mm active)Q.E. ~ 20% at peak280 ps time jitter (FWHM)

PMTs are assembled in compact hexagonal packing

The RICH HV system

The PMTs require a low-noise 800-1000 V negative voltage supply

- 4 CAEN Mainframes SY1527 (16 slots)
- A1733N (14 boards, 12 ch), A1535SN(15 boards, 24 ch)
- 4 PM feeded by one HV channel
- The last (A1733N) board of each frame has 10 unused (spare) HV channels
- 1 A1733N and 1 A1535SN spare boards
- Some boards replaced and repaired

FRONT-END and TDAQ electronics

RICH Front-End

- Custom made boards (current amplifiers with differential output)
- NINO chips used as fast Time-over-Threshold discriminator
- 64 FE boards of 32 channels each (4 NINO each)
- Signal leading and trailing edge for time slewing corrections

RICH Read-Out

- > 128 channels TDC daughter Boards (TDCB), 4 CERN HPTDC each
- ➢ NINO → 5 TEL62 mother boards FPGA based, housing 4 TDCB each
 - 4 TEL62 boards for the 1952 PMTs
 - 1 TEL62 board for multiplicity read-out used to produce the L0 trigger
- Trigger primitives are built in parallel with the readout on the same TEL62 board

RICH basic performance

Intrinsic RICH Time resolution:

Hits on Cherenkov ring divided in 2 halves \rightarrow difference between time average of 2 sets

gaussian width of TimePull = $0.5 \cdot (T_{Set1} - T_{Set2}) \sqrt{N_{hits}}$

Time Resolution of the full ring = $0.5 \cdot \sigma$

RICH Time Resolution ~ 70 ps

2016 Data π^+ vv selection

 Track driven Likelihood particle ID discriminant
 Particle mass extracted using track momentum
 Momentum measurement under mass hypothesis
 Average over momentum range (15,35) GeV/c: 2.1 · 10⁻³ μ⁺ efficiency vs 82% π⁺ efficiency

VCI 15th, Vienna Feb 18-22, 2019

Monica Pepe - INFN Perugia

- The NA62 RICH detector has been installed in 2014 and commissioned in 2014-2015
- Refurbished in 2015-2016 winter shutdown, succesfully running since then
- *** RICH** performance very close to expectations
- * NA62 was approved up to 2018 with the main goal of measuring $BR(K^+ \rightarrow \pi^+ vv)$
- Run 3 (2021-2023): opportunity for NA62 to complete the BR measurement and to address new physics cases
 The NA62 BICH will be maintained in working conditions
 - The NA62 RICH will be maintained in working conditions for the next NA62 program