

DANAE

A new effort to directly search for Dark Matter with DEPFET-RNDR detectors

Holger Kluck^{1,2}, Alexander Bähr³, Jelena Ninkovic³, Jochen Schieck^{1,2}, Hexi Shi¹ & Johannes Treis³

¹ Institut für Hochenergiephysik der Österreichischen Akademie der Wissenschaften, Austria
 ² Atominstitut, Technische Universität Wien, Austria
 ³ Max-Planck-Gesellschaft Halbleiterlabor, Germany

Outline

Sub-GeV/c² dark matter:

why is it attractive

DEPFT-RNDR detectors:

how do they work

The DANAE project:

its current status

Physics perspective:

what we aim for

Sub-GeV/c² dark matter

Several astronomical evidences for the existence of dark matter at different scales

[NASA/CXC/SAO]

[ESA and the Planck Collaboration]

Cosmic Microwave Background + Big Bang Nucleosynthesis

→ ~20% of Universe is Dark Matter but no unambiguous particle candidate

WIMP dark matter

- WIMP is a classic particle candidate for DM
- Predicted particle mass 2GeV/c² .. 120TeV/c²

Usual event signature in direct searches: nuclear recoils

Dominated the direct searches until recently

Dark sector and light dark matter

- Dark sector: interaction between DM and SM mediated by new particle(s), e.g. dark photons
- Possible event signature in direct searches: electron scattering

 Mass prediction from several models (e.g. freeze-out, asymmetric DM, freeze-in, SIMP, ELDER) including keV/c² to GeV/c² scale

Target materials for e⁻ scattering

Active target	Detection threshold	DM mass threshold	Status	Time scale
Noble liquids (e.g. Xe, Ar, Ne)	~ 10 eV	~ 5 MeV/c²	Done with data; improvements possible	existing
Semiconductors (e.g. Ge, Si)	~ 1 eV	~ 200 keV/c ²	$(E_{th} \sim 40 \text{ eV SuperCDMS, DAMIC})$ $E_{th} \sim 1 \text{eV SENSEI, DANAE R&D}$	~ 1-2 yr
Scintillators (e.g. Csl, Nal,)	~ 1 eV	~ 200 keV/c ²	R&D required	≲ 5 yr
Superfluid (e.g. He)	~ 1 eV	~ 1 MeV/c²	R&D required unknown background	≲ 5 yr
Superconductor (e.g. AI)	~ 1 meV	~ 1 keV/c²	R&D required unknown background	~ 10-15 yr

[arXiv:1608.08632]

Target materials for e scattering

Active target	Detection threshold	DM mass threshold	Status	Time scale
Noble liquids (e.g. Xe, Ar, Ne)	~ 10 eV	~ 5 MeV/c²	Done with data; improvements possible	existing
Semiconductors (e.g. Ge, Si)	~ 1 eV	~ 200 keV/c ²	(E _{th} ~ 40 eV SuperCDMS, DAMIC) E _{th} ~ 1eV SENSEI, DANAE R&D	~ 1-2 yr
Scintillators (e.g. Csl, Nal,)	~ 1 eV	~ 200 keV/c ²	R&D required	≲ 5 yr
Superfluid (e.g. He)	~ 1 eV	~ 1 MeV/c²	R&D required unknown background	≲ 5 yr
Superconductor (e.g. Al)	~ 1 meV	~ 1 keV/c²	R&D required unknown background	~ 10-15 yr

[arXiv:1608.08632]

13

Target materials for e scattering

Active target	Detection threshold	DM mass threshold	Status	Time scale
Noble liquids (e.g. Xe, Ar, Ne)	~ 10 eV	~ 5 MeV/c²	Done with data; improvements possible	existing
Semiconductors (e.g. Ge, Si)	~ 1 eV	~ 200 keV/c²	(E _{th} ~ 40 eV SuperCDMS, DAMIC) E _{th} ~ 1eV SENSEI, DANAE R&D	~ 1-2 yr
Scintillators (e.g. Csl, Nal,)	~ 1 eV	~ 200 keV/c ²	R&D required	≲ 5 yr
Superfluid (e.g. He)	~ 1 eV	~ 1 MeV/c²	R&D required unknown background	≲ 5 yr
Superconductor (e.g. Al)	~ 1 meV	~ 1 keV/c²	R&D required unknown background	~ 10-15 yr
	[arXiv:1608.08632]			

→ < 1e⁻ RMS noise level

DEPFET-RNDR detectors

DEPFET-RNDR

<u>De</u>pleted <u>P</u>-channel <u>Field Effect Transistor with <u>Repetitive Non Destructive Readout</u></u>

DEPFET-RNDR "super-pixel" [Eur. Phys. J. C77.12(2017)279]

DEPFET-RNDR

<u>De</u>pleted <u>P</u>-channel <u>Field Effect Transistor with <u>Repetitive Non Destructive Readout</u></u>

DEPFET-RNDR "super-pixel" [Eur. Phys. J. C77.12(2017)279]

DEPFET-RNDR

<u>De</u>pleted <u>P</u>-channel <u>Field Effect Transistor with <u>Repetitive Non Destructive Readout</u></u>

DEPFET-RNDR "super-pixel" [Eur. Phys. J. C77.12(2017)279]

DEPFET-RNDR

<u>De</u>pleted <u>P</u>-channel <u>Field Effect Transistor with <u>Repetitive Non Destructive Readout</u></u>

DEPFET-RNDR "super-pixel" [Eur. Phys. J. C77.12(2017)279]

DEPFET-RNDR

<u>De</u>pleted <u>P</u>-channel <u>Field Effect Transistor with <u>Repetitive Non Destructive Readout</u></u>

DEPFET-RNDR "super-pixel" [Eur. Phys. J. C77.12(2017)279]

DEPFET-RNDR

<u>De</u>pleted <u>P</u>-channel <u>Field Effect Transistor with <u>Repetitive Non Destructive Readout</u></u>

DEPFET-RNDR "super-pixel" [Eur. Phys. J. C77.12(2017)279]

DEPFET-RNDR

<u>De</u>pleted <u>P</u>-channel <u>Field Effect Transistor with <u>Repetitive Non Destructive Readout</u></u>

DEPFET-RNDR "super-pixel" [Eur. Phys. J. C77.12(2017)279]

February 19, 2019 21

Repeat: **N** independent neasurements with CDS

DEPFET-RNDR

<u>De</u>pleted <u>P</u>-channel <u>Field Effect Transistor with <u>Repetitive Non Destructive Readout</u></u>

DEPFET-RNDR "super-pixel" [Eur. Phys. J. C77.12(2017)279]

Effective noise: $\sigma_{eff} = \sigma/\sqrt{N}$

DEPFET-RNDR

<u>De</u>pleted <u>P</u>-channel <u>Field Effect Transistor with <u>Repetitive Non Destructive Readout</u></u>

DEPFET-RNDR "super-pixel" [Eur. Phys. J. C77.12(2017)279]

Effective noise: $\sigma_{eff} = \sigma/\sqrt{N}$

DEPFET-RNDR single pixel performance

DEPFET-RNDR single pixel performance

DEPFET-RNDR single pixel performance

n

Minimal noise limited by leakage current @ 233K (-40°C)

DEPFET-RNDR single pixel performance

Predicted temperature dependence (only DC from thermal excitation)

- to be verified

DEPFET-RNDR single pixel performance

Single pixel DEPFET-RNDR effective noise:

0.2e- RMS @ 203K(-70°C)

→ Capable to distinguish single electron charge

The DANAE project

<u>Direct dArk matter search using DEPFET with repetitive-Non-destructive-readout Application</u>
<u>Experiment</u>

Prototype test setup

@ HLL

[courtesy of H. Shi]

Prototype test setup

@ HLJ

[courtesy of H. Shi]

Vacuum and cooling test in March 2018: reached 150K @ cooling pad

Prototype test setup

[courtesy of H. Shi]

Detector assembly: to be assembled in mid 2019

Detector control and readout electronics

February 19, 2019

33

Prototype detector matrix

Prototype detector matrix:

- 64pixel x 64pixel
- Single pixel: 75µm x 75µm x 450µm

Sensitive volume: 24mg

Read-out sequence Simplified 5x5 matrix, N=1

Read-out sequence Simplified 5x5 matrix, N=1

Initial charges

Read-out sequence Simplified 5x5 matrix, N=1

Initial transfer

40

Read-out sequence Simplified 5x5 matrix, N=1

Initial transfer

Read-out sequence Simplified 5x5 matrix, N=1

Initial transfer

Read-out sequence Simplified 5x5 matrix, N=1

Initial transfer

Read-out sequence Simplified 5x5 matrix, N=1

Signal readout 1

Read-out sequence Simplified 5x5 matrix, N=1

Signal transfer

Read-out sequence Simplified 5x5 matrix, N=1

Signal transfer

Read-out sequence Simplified 5x5 matrix, N=1

Signal transfer

Read-out sequence Simplified 5x5 matrix, N=1

Signal transfer

Read-out sequence Simplified 5x5 matrix, N=1

Baseline readout 1

Read-out sequence Simplified 5x5 matrix, N=1

Signal readout 2

Read-out sequence Simplified 5x5 matrix, N=1

Signal transfer

Read-out sequence Simplified 5x5 matrix, N=1

Signal transfer

Read-out sequence Simplified 5x5 matrix, N=1

Signal transfer

53

Read-out sequence Simplified 5x5 matrix, N=1

Baseline readout 2

Read-out sequence Simplified 5x5 matrix, N=1

Repeat N-times Go on to next row

February 19, 2019 56

Physics perspective

February 19, 2019 57

 Expect preliminary results from the prototype setup (24 mg sensitive volume) in late 2019

[courtesy of J. Treis]

- Expect preliminary results from the prototype setup (24 mg sensitive volume) in late 2019
- Physics run with significant result requires more

[courtesy of J. Treis]

Initial goal: 0.9 g.yr

- → 40 matrices à 24mg
- → ~1g sensitives volume

Summary

- Sub-GeV/c² dark matter is a attractive alternative to classic WIMPs
- Potential signature: electron scattering
- Require semiconductor detectors with sub-e⁻ RMS noise level
- DEPFET-RNDR successfully demonstrate such a low noise level
- DANAE is a new project aiming to utilizing DEPFET-RNDR to search for sub-GeV/c² dark matter interactions in silicon
- Under construction: DANAE prototype with 64pixel x 64pixel detector matrix
- Expect first test-of-principle measurement in late 2019

→ Stay tuned for future results!

Additional slides

February 19, 2019 61

[courtesy of H. Shi (ICHEP2018)]

A comparison with skipper CCD

Туре	Pixel format [µm]	prototype mass	operating temp	dark current	readout time (1sample)	readout noise (optimal)
skipper CCD	15 x 15 x 200	0.071 g	140 K	< ~1.14 e-/pix/day	10 µs/pix/ amplifier	0.068 e-rms/pix
RNDR DEPFET	75 x 75 x 450	0.024 g	≲ 200 K	<1 e-/pix/day	4 μs/ 64 pix	0.2 e-rms/pix

similar concepts of non-destructive readout, compatible performance; different architecture, different systematics;

-> good complementary from experimental point of view

24

DEPFET with RNDR

RNDR: repetitive non-destructive readout

structure of a basic DEPFET cell: a "subpixel"

structure of RNDR DEPFET "super-pixel"

EPJ C, 77(12), 279 (2017)

25

[courtesy of H. Shi (ICHEP2018)]

compact RNDR & blind structure name RNDR_GPIX chip size 8.5 x 8.0 mm² format 64 x 64 pixel size 75 x 75 µm² PXD7 chip D.03

top-out

bot-out

outer shielding: support structure inner shielding: cooling contact

window. top out top inner

[courtesy of H. Shi (ICHEP2018)]

February 19, 2019 66

26

DEPFET matrix control & readout electronics

Detector matrix

Front-end ASICS for the 64x64 matrix with interface to Switcher-S, VERITAS

Switcher-S

64x2 channel analog multiplexer

Readout board

switcher id	W	N	E	
function	Gate 1 & 2	Gate common	clear & transfer gate	
Voltage [V]	-2.5 ~ + 5	-0.5 ~ +20	-0.5 ~ + 20/25	

VERITAS

- VERITAS 2.1 ASIC in the AMS 0.35 µm CMOS 3.3 V technology
- 64 analog readout channels able to process in parallel the **signals coming from 64 DEPFET devices**.

ADC

FADC type digitizer

27

[courtesy of H. Shi (ICHEP2018)]

Detector Structures – Matrix Devices

readout sequence

Correlated double sampling:

1st measurement: signal + baseline clear: removal of signal charges 2nd measurement: baseline

difference = signal complete clear is mandatory!

matrix operation

vertical signal lines

1 active row, other pixels integrating

→ option to speed up (1)

readout parallelisation 2 x readout channels, 2 active rows

Johannes Treis / Halbleiterlabor der MPG

February 19, 2019 68