The SuperNEMO Demonstrator
double beta experiment

A.Jeremie (on behalf of the SuperNEMO collaboration)
February 21, 2019

http://supernemo.org
The SuperNEMO Demonstrator double beta experiment

• Introduction
• From NEMO-3 to SuperNEMO
 • $\beta\beta$ sources
 • Tracker
 • Calorimeter
 • Background reduction
 • Calibration
• Current status and first results
• Future and Conclusion
NEMO: Neutrino Ettore Majorana Observatory

Majorana ν: particle and anti-particle are the same

Looking for these events \Rightarrow New physics

$2\nu\beta\beta$ $0\nu\beta\beta$

NEMO detection principle
NEMO: Neutrino Ettore Majorana Observatory

NEMO-3 (2003-2011)

- Source separated from detector
- Full topological reconstruction, particle identification
- Powerful background suppression
- Ability to discriminate different transition mechanisms
- Modular

NEMO-3 "camembert" (source top view)

- Sources
 - 60 mg/cm² foils
 - 10 kg of ββ isotopes

- Tracker
 - 6180 Geiger cells
 - Vertex resolution: $\sigma_{xy} \sim 3$ mm $\sigma_z \sim 10$ mm

- Calorimeter
 - 1940 optical modules: polystyren scintillators + 3" and 5" PMTs
 - $FWHM_E \sim 15\% / \sqrt{E_{MeV}}$
 - $\tau_c \sim 250$ ps

100Mo 6.9 kg
68Se 0.93 kg
130Te 0.45 kg
116Cd 0.40 kg
150Nd 36.5 g
95Zr 9.43 g
48Ca 6.98 g
NEMO-3: rich harvest of results

2νββ measurements and 0νββ limits for several isotopes:

<table>
<thead>
<tr>
<th>Isotope</th>
<th>Reference</th>
<th>2νββ Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>100Mo</td>
<td>Phys. Rev. Lett. 95, 182302 (2005)</td>
<td>$T_{1/2}^{2\nu} = [7.11 \pm 0.02 \text{(stat)} \pm 0.54 \text{(syst)}] \times 10^{18} \text{ yr}$</td>
</tr>
<tr>
<td>48Ca</td>
<td>Phys. Rev. D 93, 112008 (2016)</td>
<td>$T_{1/2}^{2\nu} = [6.4 \pm 0.7 \text{(stat)} \pm 1.2 \text{(syst)}] \times 10^{19} \text{ yr}$</td>
</tr>
<tr>
<td>82Se</td>
<td>Eur. Phys. J. C 78, 821 (2018)</td>
<td>$T_{1/2}^{2\nu} = [9.39 \pm 0.17 \text{(stat)} \pm 0.58 \text{(syst)}] \times 10^{19} \text{ yr}$</td>
</tr>
<tr>
<td>150Nd</td>
<td>Phys. Rev. D 94, 072003 (2016)</td>
<td>$T_{1/2}^{2\nu} = [9.34 \pm 0.22 \text{(stat)} \pm 0.62 \text{(syst)}] \times 10^{18} \text{ yr}$</td>
</tr>
<tr>
<td>116Cd</td>
<td>Phys. Rev. D 95, 012007 (2017)</td>
<td>$T_{1/2}^{2\nu} = [2.74 \pm 0.04 \text{(stat)} \pm 0.18 \text{(syst)}] \times 10^{19} \text{ yr}$</td>
</tr>
<tr>
<td>130Te</td>
<td>Phys. Rev. Lett. 107, 062504 (2011)</td>
<td>$T_{1/2}^{2\nu} = [7.0 \pm 0.9 \text{(stat)} \pm 1.1 \text{(syst)}] \times 10^{20} \text{ yr}$</td>
</tr>
<tr>
<td>96Zr</td>
<td>Nucl. Phys. A847, 168-179 (2010)</td>
<td>$T_{1/2}^{2\nu} = [2.35 \pm 0.14 \text{(stat)} \pm 0.16 \text{(syst)}] \times 10^{19} \text{ yr}$</td>
</tr>
</tbody>
</table>

Quadruple β decay

<table>
<thead>
<tr>
<th>Isotope</th>
<th>Reference</th>
<th>0νββ Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>150Nd</td>
<td>Phys. Rev. Lett. 119, 041801 (2017)</td>
<td>$T_{1/2}^{0\nu4\beta} > 1.1 \times 10^{21} \text{ years}$</td>
</tr>
</tbody>
</table>
• Introduction
• From NEMO-3 to SuperNEMO
 • $\beta\beta$ sources
 • Tracker
 • Calorimeter
 • Background reduction
 • Calibration
• Current status and first results
• Future and Conclusion
From NEMO-3 to SuperNEMO

<table>
<thead>
<tr>
<th></th>
<th>NEMO-3</th>
<th>SuperNEMO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isotope</td>
<td>100Mo</td>
<td>82Se</td>
</tr>
<tr>
<td>Mass (kg)</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>
| $T_{1/2}^{2
\nu}$ | 6.8×10^{18} y | 9.4×10^{18} y |
| Energy resolution (FWHM @ 1 MeV) | 15% | 8% |
| Source radiopurity | | |
| A (208Tl) | $\sim 100 \mu$Bq/kg | $<2 \mu$Bq/kg |
| A (214Bi) | $<300 \mu$Bq/kg | $<10 \mu$Bq/kg |
| A (222Rn) | ~ 5 mBq/m3 | <0.15 mBq/m3 |
| Exposure | 5 y | 2.5 y |
| Sensitivity $T_{1/2}^{0\nu}$ | $>10^{24}$ y | $>5 \times 10^{24}$ y |
| $m_{\beta\beta}$ | $<330-620$ meV | $<260-500$ meV |
| | | $<82-160$ meV |

100kg plan and choice of isotope according to enrichment possibilities
From NEMO-3 to SuperNEMO

<table>
<thead>
<tr>
<th></th>
<th>NEMO-3</th>
<th>SuperNEMO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Demonstrator</td>
<td>Complete</td>
</tr>
<tr>
<td>Isotope</td>
<td>100Mo</td>
<td>82Se</td>
</tr>
<tr>
<td>Mass (kg)</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>$T_{1/2}^{2\nu}$</td>
<td>6.8×10^{18} y</td>
<td>9.4×10^{18} y</td>
</tr>
<tr>
<td>Energy resolution</td>
<td>15%</td>
<td>8%</td>
</tr>
<tr>
<td>(FWHM @ 1 MeV)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Source radiopurity</td>
<td>$\sim 100 \mu$Bq/kg</td>
<td>$\leq 2 \mu$Bq/kg</td>
</tr>
<tr>
<td>$A^{(208}Tl)$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$A^{(214}Bi$</td>
<td>$\leq 300 \mu$Bq/kg</td>
<td>$\leq 10 \mu$Bq/kg</td>
</tr>
<tr>
<td>$A^{(222}Rn$</td>
<td>$\leq 5 \text{mBq/m}^3$</td>
<td>$\leq 0.15 \text{mBq/m}^3$</td>
</tr>
<tr>
<td>Exposure</td>
<td>5 y</td>
<td>2.5 y</td>
</tr>
<tr>
<td>Sensitivity $T_{1/2}^{0\nu}$</td>
<td>$>10^{24}$ y</td>
<td>$>5 \times 10^{24}$ y</td>
</tr>
<tr>
<td>$m_{\beta\beta}$</td>
<td>$<330-620$ meV</td>
<td>$<260-500$ meV</td>
</tr>
</tbody>
</table>

Improving resolution, only way to distinguish $2\nu\beta\beta$ from $0\nu\beta\beta$

Strategy:
- reduce background (Radon tent, radiopurity...)
- background rejection (topology, timing)

Start with a demonstrator: 7kg of 82Se
SuperNEMO demonstrator module

- \(\beta\beta\) source => \(^{82}\text{Se} \sim 50\text{mg/cm}^2\)
- Tracker => \(~2000\) cell drift chamber (Geiger mode) with 95% He+4% \(\text{C}_2\text{H}_5\text{OH}+1\%\ \text{Ar}\)
- Calorimeter => 712 Optical modules (Scintillator + PMT)
- 25G Magnetic field
- Passive shielding => iron + PE/water
- Anti-radon system

LSM, Modane, France
• Introduction
• From NEMO-3 to SuperNEMO
 • \(\beta\beta\) sources
 • Tracker
 • Calorimeter
 • Background reduction
 • Calibration
• Current status and first results
• Future and Conclusion
Six different purification batches for radiopure ^{82}Se production (distillation, chromatography, chemical precipitation)

=> Good opportunity to validate purification techniques

Novel purification process « reverse chromatography » (publ. in prep.)

2 types of ^{82}Se foils (40-60mg/cm2 ~300µm thick, enrichment: 96%-99.9%):

• same as for NEMO-3: in one piece poured into perforated Mylar (12µm)
• new method with standalone pads in raw Mylar (12µm)

Mix ^{82}Se powder with PVA (90%/10%)

Pour mixture

Prepared in an ISO 6 clean room
36 foils: 34 82Se (6.3kg) + 2 Cu (0.4kg)
• Introduction
• From NEMO-3 to SuperNEMO
 • $\beta\beta$ sources
 • Tracker
 • Calorimeter
 • Background reduction
 • Calibration
• Current status and first results
• Future and Conclusion
Tracker Cell Production
2034 cells, ~13,000 wires

4 C-sections assembly

Rn emanation from fully assembled tracker
Target (150 μBq/m³) reached

Commissioned with cosmic rays before installation
Tracker: installation at LSM

Tracker with wires

Calorimeter blocks

Source foils
The SuperNEMO Demonstrator double beta experiment

- Introduction
- From NEMO-3 to SuperNEMO
 - $\beta\beta$ sources
 - Tracker
 - Calorimeter
 - Background reduction
 - Calibration
- Current status and first results
- Future and Conclusion
- 712 Optical Modules
- Polystyrene-based scintillator
- Hamamatsu 8” PMT (some 5” PMT outer rows)
- Teflon and Mylar wrapping
- Individual pure iron magnetic shields (25 G)
- PMT directly coupled to scintillator (no light guide)

Each block characterized

\[\chi^2 / \text{ndf} = 79.55 / 93 \]
\[\text{Constant} = 340.3 \pm 3.1 \]
\[\text{Mean} = 0.9991 \pm 0.0004 \]
\[\text{Sigma} = 0.03258 \pm 0.00031 \]

\[\chi^2 / \text{ndf} = 40.52 / 4 \]
\[\text{Constant} = 7.223 \pm 0.02922 \]

7.8% FWHM @ 1 MeV
Scintillator + 8” PMT
(target: 8% FWHM @ 1 MeV)
Calorimeter: installation at LSM

Front of Main Wall

Back of Main Wall

Nucl.Inst.Meth. A 868 98-108

15th VCI 2019

JEREMIE Andrea (CNRS)-SuperNEMO

18
• Introduction
• From NEMO-3 to SuperNEMO
 • $\beta\beta$ sources
 • Tracker
 • Calorimeter
 • Background reduction
 • Calibration
• Current status and first results
• Future and Conclusion
Reduce background: Radon

SuperNEMO ^{222}Rn target: $\leq 150 \mu\text{Bq/m}^3$

Remove Radon from experiment

Anti-radon tent:
- Black polycarbonate (shown in blue)
- Flushed with radon free air (dedicated facility with radon trap)

Measure Radon before installation

Rn emanation setup

Rn permeability setup

Rn concentration line for Rn measurements

15th VCI 2019
JEREMIE Andrea (CNRS)-SuperNEMO 20
Materials screening using HPGe in LSM, Bordeaux, Boulby 0.1-1mBq/kg

Lots of tools to check radiopurity of demonstrator components

Dedicated BiPo detector to measure $\beta\beta$ source foil contamination, 10μBq/kg for 214Bi, 2 μBq/kg for 208Tl — operating since 2013 at LSC (Canfranc, Spain)

Also ICP-MS at UCL
• Introduction
• From NEMO-3 to SuperNEMO
 • $\beta\beta$ sources
 • Tracker
 • Calorimeter
 • Background reduction
 • Calibration
• Current status and first results
• Future and Conclusion
Absolute energy calibration: ^{207}Bi sources

- Rn tight automatic deployment system of ^{207}Bi sources
- To be periodically deployed for calibration

Spatial distribution of calibration sources

Deployment of ^{207}Bi sources between source foils
• Monitor the calorimeter response with a precision of 1%.
• 20 pulsed UV LEDs => inject light into calorimeter modules via fiber optics
• Reference OM with 241Am for LED stability monitoring
• Introduction
• From NEMO-3 to SuperNEMO
 • $\beta\beta$ sources
 • Tracker
 • Calorimeter
 • Background reduction
 • Calibration
• Current status and first results
• Future and Conclusion
Demonstrator (active part) assembled at LSM November 2018
Half-detector commissioning with Argon

Commissioning on one assembled calorimeter main wall (December 2018)

Energy deposit in an OM (Scint. + PMT)

SuperNEMO Preliminary
Sampling 2.56 GS/s - 12 bits

Reflectometry

Preliminary
• Introduction
• From NEMO-3 to SuperNEMO
 • $\beta\beta$ sources
 • Tracker
 • Calorimeter
 • Background reduction
 • Calibration
• Current status and first results
• Future and Conclusion
Next steps

- Progressive start-up of remaining demonstrator components
 - Coil installation
 - Anti-radon tent installation
 - Passive shielding installation

...Data taking throughout...
• SuperNEMO tracker-calorimeter technique
 => multi-observable signal identification + background rejection
• Detector construction challenging
• Optical Modules with exceptional performances: 7.8% FWHM @ 1 MeV
• Radiopure tracker construction: 150 μBq/m³ reached
• Novel source foil production: ~7kg of 82Se
• Possibility for other isotopes: 150Nd and 48Ca for example
• Calibration within 1%: Light Injection and 207Bi sources
Particles

Tracker hits appear as circles (radius depends on drift time)

Individual electron energy and time

\[E = 2.01 \pm 0.05 \text{ MeV} \]
\[t = 2.02 \pm 0.14 \text{ ns} \]

Electrons curve this way on this side of the foil...

... and this way on this side

Plan view (partial)

Calorimeter hit with no track

E = 0.43 \pm 0.02 \text{ MeV}
\[t = 5.37 \pm 0.31 \text{ ns} \]

Short, straight tracks a few μs after an electron are characteristic of alpha particles from ^{214}Bi-^{214}Po decays.

15th VCI 2019

JEREMIE Andrea (CNRS)-SuperNEMO
How To Build a $\beta\beta$-Experiment

- **maximise efficiency (ε) & isotope abundance (a)**
- **maximise exposure = mass (M) × time (t)**

\[
T_{1/2}^{0\nu} (90\% \text{ C.L.}) = 2.54 \times 10^{26} \text{ y} \left(\frac{\varepsilon \times a}{W} \right) \sqrt{\frac{M \times t}{b \times \Delta E}}
\]

W = atomic weight

minimise background (b) & energy resolution (ΔE)
Dedicated BiPo detector to measure $\beta\beta$ source foil contamination, 10μBq/kg for 214Bi, 2 μBq/kg for 208Tl — operating since 2013 at LSC (Canfranc, Spain)

Principle: 82Se foil placed between two PS scintillators + 5” PMTs

212Bi-212Po effect

232Th

212Bi

(60.5 min)

β

212Po

(300 ns)

α

208Tl

(3.1 min)

36%

208Pb (stable)

208Tl measured by electron-alpha coincidence from 212BiPo cascade with $\Delta T \sim 300$ ns

Source foil

Scintillator

Time

e^-

212BiPo

α

~ 299 ns