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Basic idea: to detect scintillation light from noble
elements in the non-VUV, i.e. in the near UV,
visible and near IR

One way to do it is doping Ar with Xe and N,, to shift the
VUV light of Ar to longer wavelength.
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See "Photon emission and atomic collision processes in two-phase argon
doped with xenon and nitrogen”: the most complete compilation over
past 50 years (A. Buzulutskov, EPL 117 (2017) 39002).




Another way is to use a concurrent scintillation
mechanism, namely that of neutral bremsstrahlung
(NBrS)

Until recently, it was believed that proportional electroluminescence
(EL) in pure noble gases was fully due to VUV emission of noble gas
excimers produced in atomic collisions with excited atoms.

On the other hand, our recent experiments have revealed an additional
mechanism of proportional EL, namely that of bremsstrahlung of
drifting electrons scattered on neutral atoms (so-called neutral
bremsstrahlung, NBrS).
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ABSTRACT

Proportional electroluminescence (EL) in noble gases has long been used in two-phase detectors for dark
matter search, to record ionization signals induced by particle scattering in the noble-gas liquid [52 sig-
nals). Until recently, it was believed that proportional electroluminescence was fully due to VUV emission
of noble gas excimers produced in atomic collisions with excited atoms, the latter being in turn produced
by drifting electrons. In this work we consider an additional mechanism of proportional electrolumines-
cence, namely that of bremsstrahlung of drfting electrons scattered on neutral atoms (so-called newtral
bremsstrahlung); it is systemically studied here both theoretically and experimentally. In particular, the
absolute EL yield has for the first time been measured in pure gaseous argon in the two-phase mode,
using a dedicated two-phase detector with EL gap optically read out by cryogenic PMTs and SiPMs. We
show that the neutral bremsstrahlung effect can explain two mtriguing observations in EL radiation: that
of the substantial contribution of the non-VUV spectral component, extending from the UV to NIR, and
that of the photon emission at lower electric fields, below the Ar exctation threshold. Possible applica-
tions of neutral bremsstrahlung effect in two-phase dark matter detectors are discussed.

i 2018 Elsevier B.V. All nghts reserved.



Part 1:

Theory of NBrS
electroluminescence



Types of bremsstrahlung
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Neutral bremsstrahlung is
produced by s/ow (~10 eV)
electrons when they are
scattered (elastically or
inelastically) on  neutral
atoms.

At such electron energies, the contribution of ordinary bremsstrahlung
(produced in the Coulomb field of a nucleus) and polarization bremsstrahlung
(produced by atoms due to their time-dependent polarization) is negligible.

Ordinary bremsstrahlung Polarization bremsstrahlung



Neutral bremsstrahlung: theoretical predictions

The differential cross section for NBrS photon emission is expressed via
elastic cross section (o0,) of electron-atom scattering:
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Using this cross section and electron energy distribution functions, we

calculated the spectra of NBrS emission at different reduced electric fields
E/N (expressed in Td).

1 Td corresponds to electric field of 0.87 kV/cm at 87 K.



Neutral bremsstrahlung vs ordinary electroluminescence:
theoretical predictions
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Reduced ordinary EL yield and that of neutral
bremsstrahlung at 0-1000 nm in gaseous Ar as a
function of the reduced electric field.

Summarizing, the theory of NBrS EL predicts:

1.

2.

electroluminescence below the Ar excitation threshold (~4 Td), in the UV,
visible and NIR regions;
appreciable non-VUV component above the Ar excitation threshold,
extending from the UV to NIR.



Part 2:
NBrS electroluminescence:
experiment vs theory



Experimental setup
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Bare PMT: 300-650 nm (via direct recording)
PMT+WLS: 100-650 nm (at <400 nm via re-emission in WLS, at >400 nm via

direct recording)
SiPM: 400-1000 nm (via direct recording)



EL gap
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Properties of proportional EL:

1) there is a noticeable contribution of the non-VUV spectral component in EL
radiation, extending from the UV to NIR.

2) there is a photon emission at lower electric fields, below the Ar excitation
threshold (at 4 Td) where the non-VUV component fully dominates.

Above the threshold, the theory quickly diverges from experiment. This discrepancy
was explained by the effect of Feshbach resonance: see [DeMunari et al. Lett.
Nuov. Cim. 2 (1971) 68], [Dyachkov et al. Sov. Phys. JETP 38 (1974) 697],
[Buzulutskov et al. Astroparticle Physics 103 (2018) 29]



Reduced EL yield in the VUV (ordinary EL)
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Reduced EL yield for
ordinary (VUV)
electroluminescence,
obtained using NBrS
paradigm, was compared to
the yields at room T,
obtained experimentally
[Monteiro et al, Phys.
Lett. B 668 (2008) 167]
and theoretically [Oliveira
et al, Phys. Lett. B 703
(2011) 217].

This figure demonstrates a convincing agreement between the theory and our
experiment, the latter using NBrS paradigm in proportional EL.
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obtained by averaging
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] the our and Monteiro
] data at lower fields is

presumably due to the
NBrS effect, which was
not taken into account by
Monteiro.



Part 3:
Possible applications of NBrS
effect



Direct optical readout of two-phase Ar TPCs
using NBrS electroluminescence

The important result of this work is that at moderate electric fields in the EL
gap, below 5 Td, the amplitude of the S2 signal from the bare PMT s
comparable with that of the PMT with WLS, in the absence of optical contact
between the WLS and the PMT. This observation paves the way for direct
readout of S2 signals in two-phase dark matter detectors using PMTs and
SiPM-matrices.
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SiPM-matrix readout of a two-phase Ar TPC using
electroluminescence in the visible and NIR range (in

Pulsed X-rays
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The measured maximum light
yield, of 0.4 pe/keV, is
expected to be increased up
to 6.5 pe/keV in optimized
readout conditions.
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Pulse shape: fast component fraction in S2 signal
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In DarkSide-50 the fast component fraction was taken p=10% (using ordinary
EL approach). According to our data and using NBrS paradigm, this fraction is
predicted to be substantially larger: of about 50%.

This enhancement can affect the determination of the quantities using the fast
component, such as the diffusion coefficients in liquid Ar or z-coordinate
fiducialization.




Universal character of NBrS electroluminescence
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NBrS electroluminescence should be
present in all noble gases, including
He, Ne, Kr, Ar and Xe. That is
why we assume that NBrS
electroluminescence is present in S2
signals of two-phase Xe detectors,
such as LUX, PandaX, Xenonl00
and RED100.

Presumably it has not been vyet
observed due to the fact that the
S2 signal in Xe is recorded directly
using PMTs with quartz windows
(i,e. without WLS reemission
losses), resulting in that the NBrS
signal is difficult to observe at the
background of a strong main signal.



NBrS electroluminescence in noble liquids
(in immersed GEM-like structures) ?
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The NBrS effect can be responsible for proportional EL observed in liquid Ar
and Xe using immersed GEM-like structures.

The reduced electric fields in the center of GEM or THGEM holes used in
liqguid Ar, of 0.3 - 0.7 Td. For such reduced electric fields, the theory
predicts that NBrS electroluminescence already exists. It also predicts the
linear dependence of the EL yield observed in experiments.



Scintillation yield (photon/MeV)
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The weak primary
scintillations in liquid Ar
in the visible and NIR
range, observed earlier,
might be explained by
neutral bremsstrahlung of
the primary ionization
electrons.

NBrS primary scintillation
in liquid Ar is currently
under further study in
our laboratory.



Part 4:
Applications of NBrS effect
already used in practice



Detection of ultrahigh-energy cosmic rays using NBrS
("molecular bremsstrahlung”) in the radio-frequency range

NBrS is supposed to be used in practice to develop a detection technique for
ultrahigh-energy cosmic rays. Here the NBrS radiation in the radio-frequency
range is emitted by primary ionization electrons left after the passage of the
showers in the atmosphere [AlSamarai et al Phys. Rev. D 93 (2016) 052004 ]

Particle shower impact with ground:

Gor.ham et 0' = Direct detection of shower 'slice’ by ground array

Ph R D 7 8 = Indirect detection of integrated profile via beamed radio synchrotron
YS - Rév. Developing air shower:

(2008) 03 2007 = Indirect detection of profile of ionization density by:

a) Nitrogen fluorescence (optical)
b) Thermal molecular bremsstrahlung (microwave)
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Continuous emission spectra in a weakly ionized
plasma due to NBrS
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The NBrS effect was used to explain continuous emission spectra in a weakly
ionized plasma in Ne, Ar and Xe, in glow and radio-frequency discharges.



Emission spectra in sonoluminescence due to NBrS
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The NBrS effect was used to explain
sonoluminescence spectra of the
bubbles in liquid Ar.

A measured sonoluminescence spectrum
of Ar bubbles is also shown (dots).



Summary

A new mechanism of proportional electroluminescence (EL) in
two-phase Ar has been revealed, namely that of neutral
bremsstrahlung (NBrS), that quantitatively describes the photon
emission below the Ar excitation threshold and non-VUV
component above the threshold.

This paves the way for direct readout of S2 signals in two-
phase TPCs, using PMT and SiPM matrices. In addition, it
predicts the enhanced contribution of the fast component to S2
signal, which can affect the correct determination of diffusion
coefficients and z-coordinate fiducialization in liquid Ar.

The NBrS effect has a universal character: it should be present
in all noble and molecular gases. It may also explain the non-
VUV components observed earlier in various light emission
processes, in particular the primary and secondary scintillations
in noble liquids in the visible and NIR range.
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Our global objective and current activity

Development of liquid Ar detectors of ultimate sensitivity
for dark matter search and coherent neutrino-nucleus
scattering experiments and their energy calibration.

Our group is currently conducting researches in the

following directions, in the frame of Laboratory of

Cosmology and Elementary Particles (NSU and BINP) and in

the frame of DarkSide experiment:

- Measurement of electroluminescence (EL) yields in two-
phase Ar using a 9-liter detector.

- Problem of Ar doping with Xe and N2.

- Measurement of ionization yields of nuclear recoils in
liquid Ar using neutron scattering technique.

- Development of new readout technique in two-phase Ar
detectors using SiPM-matrices.



Experimental setup
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Taking intfo account light propagation through acrylic plates and WLS, the
detectors were sensitive in the following wavelength regions:

1PMT (bare PMT): 300-650 nm (via direct recording)

3PMT+WLS: 100-650 nm (at <400 nm via re-emission in WLS, at >400 nm via

direct recording)
SiPM-matrix: 400-1000 nm (via direct recording)



NBrS EL theory: basic equations
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Ordinary electroluminescence, involving excimers



NBrS EL theory: basic equations
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NBrS EL theory: cross-sections
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Hypothesis of electron resonance trapping

Mechanism of electron resonance trapping:

G.M. De'Munari et al., Electroluminiscence of rare gases and electron  G.M. De’Munari et al., Effects of molecular gases on Xe electrolumines-
bremsstrahlung, Lett. Nuov. Cimento 2 (1971) 68 cence and electron resonance trapping, Nuov. Cimento 3 (1984) 963

When the electron, accelerated by the electric field between the collisions,
reaches the resonance energy, with high probability it is captured to form a
negative ion state Ar-. The electron spends there a certain time, of about 0.5
ps, and then releases at somewhat lower energy, since part of the energy is
transferred to the atom. Then the cycle repeats, which finally leads to
trapping of a part of the electrons at the resonance energy and thus to the
enrichment of the high-energy tail of the electron energy distribution function.
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NBrS EL theory:
electron energy distribution functions
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Electron energy (V)

Electron energy distribution functions, calculated
using Boltzmann equation solver BOLSIG+ (free

software)

E/N is expressed in Td.

1 Td = 10-17 V cm? atom-!, corresponding to ~0.87

kV/cm in gaseous Ar at 87 K.
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NBrS EL theory: EL yield field dependence
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NBrS EL yield in the 0-1000 nm range
represents the maximum number of NBrS o l l l l 0
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existing devices.
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Experimental setup
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QE. PDE, transmittance
and emission spectral density (10" nm™)

Optical spectra
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There is no rational mechanism
other than that of NBrS

Physics of electroluminescence is an exact science: all the reaction rate
constants of possible EL mechanisms in the presence of impurities are known,
allowing to rule out their effect on electroluminescence at the given impurity
content limits.

In our experiment this limit was below 1 ppm for N,, Xe and other non-
electronegative impurities in total, while for electronegative (oxygen-equivalent)
impurities it was below 5 ppb (corresponding to the electron lifetime in liquid
Ar exceeding 100 us).

With such vanishingly small impurity contents, there is only one known
mechanism that can explain the EL effect under the Ar excitation threshold,
namely that of NBrS.

Finally, regarding possible effect of dissolving of the TPB-based WLS in liquid
Ar reported recently, it does not matter for our case since it acts only in the
liquid phase. Moreover, it was shown that the WLS films composed of non-
saturated TPB in polymer matrix, i.e. similarly to that used in our experiment
(1 part of TPB per 3 parts of polystyrene), are resistant to dissolving in liquid
Ar.



Pulse shape: fast component fraction

Pps-s0 = OELgase/(OELgqst + OELgion) ~ 0.1 OEL¢qs - Ordinary EL, fast component (11 ns)

OEL¢gqs: - Ordinary EL, slow component (3.2 us)

OELfqst + OELgiow + k * LYyithout wis = LYwith wis

LY, yithour wis - Light yield for detector without WLS
LY,yitn wis - Light yield for detector with WLS

k ~0.58 - Coefficient to account different spectral
sensitivity for NBrS for detector with and without
WLS

Pnew = (OELfast + k * LYyithout WLS)/(OELfast + OELgow + k * LY yithout WLS) =

(OELfast + k * LYyithout WLS)/LYwith wLs =
1 - OEleow/LYWith WLS =

1 — [(1 = pps—50)/(OELsast + OELgi) |/LYuien wis =

1 — [(1 —pps-s50)/LYwithwis — k * LYyitnour wis) 1/LYwith wis =

1 — (1 —pps—s0) (1 —k * LYyitnout wrs/LYwitn wis)




Estimation of extraction grid sagging in DarkSide-50

Agnes et al, PLB 743 (2015) 456:

"..52 has a strong radial dependence,
where events under the central PMT

exhibit greater than three times more
electroluminescence light than events at
the maximum radius.”
DarkSide-50 TPC operated at nominal EL
eclectic field of 4.6 Td.
Top PMT array
PMT mount and
reflector
| Diving bell
T ITO anode
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Estimation of extraction grid sagging

N ITO anode | E(fleld) — V/ (L/g + l)
4.6 Td 5.6 Td 1=10 mm
v -
(applied l i ! El . LZ/E' +
voleee) AL b E, Li/ 41
v oo ___ ] ) sy i &

Extraction grid

= [L2/8+l /—— l]

sag = (L, —L;) ~3.8mm



NBrS in avalanche scintillations in noble gases?

So far, direct recording of avalanche scintillations by SiPMs was considered to
be provided by NIR emission of higher-level Ar excitation states Ar*(3p°4p!)

CCD Camera
Sony ICX285AL

It is not yet clear how large the contribution of
NBrS electroluminescence is in avalanche
scintillations, which are wused in combined
THGEM/SiPM and THGEM/CCD multipliers. I

webcam

G-APD matrix
ge=h g=h g=h i -

TPB coated
perspex disc

. _2xTHGEMs

Extraction grid

Source

* actuator

Field shaping
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