

L I OR A R A Z I

#### BEN-GURION UNIVERSITY

ON BEHALF OF THE NEXT COLLABORATION

15<sup>th</sup> Vienna Conference on Instrumentation 18-23 February 2019, Vienna

#### Neutrinoless double beta decay ( $\beta\beta0\nu$ ): What is it and why should we care?

- $\beta\beta0v$ : ultra-rare hypothetical radioactive decay, where two neutrons inside the nucleus simultaneously transform into two protons emitting two electrons and *no antineutrinos*
- If observed will be the first evidence that the total lepton number is not conserved
- Will prove that the neutrino is a Majorana fermion
- Supporting evidence for the see-saw mechanism and leptogenesis

| $p p \, \Delta \nu$ | $p$ |
|---------------------|-----|
| n                   | p   |
| w                   | V   |
| w                   | V   |
| w                   | V   |
| w                   | V   |
| w                   | V   |
| w                   | V   |
| w                   | V   |
| w                   | V   |
| w                   | V   |
| w                   | V   |
| w                   | V   |
| w                   | V   |
| w                   | V   |
| w                   | V   |
| w                   | V   |
| w                   | V   |
| w                   | V   |
| w                   | V   |
| w                   | V   |
| w                   | V   |
| w                   | V   |
| w                   | V   |
| w                   | V   |
| w                   | V   |
| w                   | V   |
| w                   | V   |
| w                   | V   |
| w                   | V   |
| w                   | V   |
| w                   | V   |
| w                   | V   |
| w                   | V   |
| w                   | V   |
| w                   | V   |
| w                   | V   |
| w                   | V   |
| w                   | V   |
|                     |     |

 $R R$  $2\nu$  vs.  $R R$  $0\nu$ 

 $\Delta L = 0$ , *v* can be Dirac or Majorana Observed in 11 isotopes  $T_{1/2}$ ~10<sup>19</sup> – 10<sup>21</sup> y



 $\Delta L = 2$ , *v* must be Majorana

Not observed  $T_{1/2} > 10^{26}$  y

Q-value shared among 4 particles Electrons kinetic energy = Q-value

$$
\beta\beta 2\nu\text{ vs. }\beta\beta 0\nu
$$



$$
\beta\beta 2\nu\text{ vs. }\beta\beta 0\nu
$$



 $\rightarrow$  Need heroic background suppression at  $Q_{\beta\beta}$ 

### From  $\beta\beta 0\nu$  half-life to effective Majorana neutrino mass



### NEXT Neutrino Experiment with Xenon TPC

- Search for  $\beta\beta 0v$  in <sup>136</sup>Xe in a *high pressure xenon gas* time projection chamber (TPC)
- Working in gas allows:
	- $\degree$  Excellent energy resolution (aiming at ~0.5% FWHM at  $Q_{BB}$ =2.458 MeV)
	- Track topology enables discriminating γ-induced electrons from ββ events
- High pressure (10-15 bar) required to assemble enough mass in a reasonable volume
- Currently operating NEXT-White  $(-10 \text{ kg of Xe})$  enriched to 91%  $^{136}$ Xe), moving to NEXT-100 (100 kg)
- Radiopure detector, running at Canfranc Underground Laboratory











S1 (PMTs) gives  $t_0$ 

S2 magnitude by proportional EL (PMTs) gives the event energy



S1 (PMTs) gives  $t_0$ 

S2 magnitude by proportional EL (PMTs) gives the event energy

S<sub>2</sub> time-slice images (SiPMs) give the event topology



#### Energy resolution in Xe gas

8 FWHM energy resolution  $E_{\gamma}$  = 662 keV vs. Xe density  $\sharp$ Xe, T = 110 $^{\circ}$ C-<sup>137</sup>Cs 662 keV  $\gamma$  $6\phantom{1}6$ Energy Resolution, % ionization signal only LXe,  $T = 30^{\circ}$ C  $\overline{4}$  $\overline{2}$ A. Bolotnikov, B. Ramsey, Nucl. Instr. and Meth. A 396 (1997) 360  $\overline{0}$  $\overline{2}$ 3 4 Density, g/cm<sup>3</sup>

**NEXT**

#### Topological signature

#### Bragg peak – 'blob' of dense ionization at the end of electron track



#### Blob-based background rejection



P. Ferrario, et al. (NEXT Collaboration), JHEP 1605 (2016) 159, arXiv:1507.05902

#### Running prototype: NEXT-White (NEW) ~10 kg Xe



F. Monrabal *et al.* (NEXT collaboration), arXiv:1804.02409

#### Running prototype: NEXT-White (NEW) - 10 kg Xe



#### Online 3D calibration maps with <sup>83m</sup>Kr: pointlike 41.5 keV events throughout TPC volume



Geometrical S2 map

#### Electron lifetime map

Average >4 ms, 8 times larger than max drift time

G. Martínez-Lema, *et al.* (NEXT collaboration) 2018 *JINST* **13** P10014, arXiv:1804.01780.

#### NEW: Calibration with "high-energy" sources





<sup>137</sup>Cs 662 keV Extrapolates  $(1/\sqrt{E})$  to 0.61% FWHM at  $Q_{\beta\beta}$ 

<sup>208</sup>Tl 1593 keV e<sup>+</sup>e<sup>-</sup> escape peak Extrapolates to 0.68% FWHM at  $Q_{\beta\beta}$ 

<sup>208</sup>Tl 2615 keV full absorption peak Extrapolates to 0.85% FWHM at  $Q_{BB}$ 



J. Renner *et al.* (NEXT collaboration), 2018 *JINST* 13 P10020, arXiv:1808.01804.

February 19, 2019 **Lionary 19, 2019** 22 LIOR ARAZI (BGU): NEXT STATUS 22 LIOR ARAZI (2001) 22

#### Track topology in NEW



#### Beta emission from the cathode

P. Novella, et al. (NEXT collaboration) *JHEP* 1810 (2018) 112*,* arXiv:1804.00471

February 19, 2019 LIOR ARAZI (BGU): NEXT STATUS 23



#### Signal/background discrimination using blobs

<sup>208</sup>Tl escape peak events: MC and data



#### NEW: low-background run < 3 mHz above 600 keV



#### Low background: sources are well understood and modelled



background model

isotope-specific scaling

#### NEXT NEW step: enriched Xe for  $\beta\beta 2\nu$



#### NEXT-100 (assembly in one year)



#### NEXT-100 expected sensitivity

500  $14$ Background: 1 counts/100 kg/yr for 1% FWHM  $12$ 400  $10$  $T_{1/2}$  (10<sup>25</sup> years) Dashed: largest and smallest estimations  $\begin{array}{c}\n\text{Time} \\
\text{Time} \\
\text$ for the nuclear matrix elements 200 Similar sensitivity as KamLand-ZEN after ~4 years 100 (*remember NEXT-100 is a demonstrator*  0 *for a ton-scale detector*) 100 1000  $10$ exposure (kg year)

J. Martín-Albo, et al. (NEXT collaboration), JHEP (2016) 2016 159, arXiv:1511.09246

#### NEXT on the ton-scale: Exploring the Inverted Hierarchy



- Plot shows the sensitivity of a 100% efficient xenon experiment (with a reasonable NME set and  $g_A = 1.27$ )
- With a background ~10 counts/ ton/year and a mass of 1 ton, 10 years of run are required (e.g, ~30 years for an efficiency of 30 %).
- With a background count of  $\sim$ 1 counts/ton/year, only 2 years are required (6 years for an efficiency of 30%).

J. Martín-Albo Ph.D. thesis (2015), http://roderic.uv.es/handle/10550/41728

### Barium Tagging: towards "background free" experiment

Drastic reduction in  $\gamma$ -induced background by identifying the <sup>136</sup>Ba daughter

Basic idea – single molecule fluorescence imaging (SMFI)

- coat cathode with chelating molecules selective for barium ions (but not Xe).
- The molecules are non fluorescent in isolation and become fluorescent upon chelation.
- Interrogate cathode surface with a laser: a single molecule holding Ba fluoresces at a longer wavelength and is readily identified.

A. D. McDonald *et al.* (NEXT Collaboration), PRL **120**, 132504 (2018)



### "Conventional" R&D

Parallel to Ba-tagging, additional strategies under development for background reduction

Two main problems to tackle:

- Electron diffusion smears out track features
- PMTs at the energy plane still contribute radioactive background

Strategies:

- $\circ$  Low-diffusion gas (Xe-He, or Xe doped with <1% CH<sub>4</sub>)
- Cryogenic operation to allow energy measurement with radiopure SiPMs

#### Electron diffusion in pure Xe: from "spaghetti with meatballs" to "sea cucumber"



#### Diffusion driven by elastic collisions with heavy xenon atoms

#### Electron diffusion in Xe-He, or Xe with <1% methane



Diffusion dominated by elastic collisions with the much lighter He atoms, or by inelastic collisions with  $CH<sub>4</sub>$ 

R. Felkai, *et al.* (NEXT collaboration) *Nucl. Instrum. Meth.* A **905** (2018) 82, arXiv:1710.05600 C. A. O. Henriques, et al. (NEXT collaboration), JHEP **1901** (2019) 027, arXiv:1806.05891.

### Summary and outlook

The high-pressure Xe TPC has unique advantages, making it a leading candidate for the ton-scale  $\beta\beta0\nu$  search era

NEXT-White demonstrated superb energy resolution and effective track reconstruction on the 10-kg scale. Background is low and well understood.  $\beta\beta$ 2 $\nu$  data taking started Feb 2019.

NEXT-100 will demonstrate the technology on the 100-kg scale, providing competitive limits within a few years

The NEXT collaboration pursues promising directions for major background reduction, critical for the ton-scale detector: Ba tagging + topology improvement + higher radiopurity

# Backup slides

## Largest source of uncertainty: the size of axial coupling  $g_A$

 $g_A = 1.269$  for weak interaction and decays of nucleons Quenching effects inside the nucleus *may* considerably reduce

Conservatively one should consider several options:

$$
g_A = \begin{cases} g_{nucleon} & = 1.269 \\ g_{quark} & = 1 \\ g_{phen.} & = g_{nucleon} \cdot A^{-0.18} \end{cases}
$$

The degree of  $g_A$  quenching is unknown. The expression for  $g_{phen.}$  is based on  $\beta\beta$ 2 $\nu$  half-lives and may be different for  $\beta\beta0\nu$ 

# Effect of uncertainty in  $g_A$



For <sup>136</sup>Xe taking  $g_A = g_{phen}$  pushes up the limit on  $m_{\beta\beta}$  by a factor of  $\gtrsim 5$