PAUL SCHERRER INSTITUT

M. Hildebrandt :: Paul Scherrer Institut on behalf of the CDCH team of the MEG II Collaboration

The ultra-light Drift Chamber of the MEG II Experiment

Vienna Conference on Instrumentation VCI2019, Vienna, February 20, 2019

charged Lepton Flavour Violation

- MEG experiment at the Paul Scherrer Institut (Villigen, CH) is searching for the charged lepton flavour violating (cLFV) decay $\mu^{*} \rightarrow e^{*} \gamma$
- Standard Model (SM): forbidden decay
- Standard Model with v masses and oscillations: strongly supressed due to small v masses

BR ($\mu^+ \rightarrow e^+ \gamma$) $\approx 10^{-54}$

Beyond Standard Model (BSM) theories: enhanced probability due to mixing of new particles

 \rightarrow experimental observation of $\mu^{+} \rightarrow e^{+} \gamma$ is clear signature of "New Physics" beyond the SM

MEG Experiment

- located at the Paul Scherrer Institut (PSI)
 - □ p-cyclotron: 590 MeV, 2.4 mA (\rightarrow 1.4 MW)
 - most intense DC low momentum (28 MeV/c) muon beam in the world: intensity O(10⁸ μ/s)
- dedicated detector to measure the observables characterising the μ⁺ → e⁺ γ event (E_γ, E_e, t_{eγ}, ϑ_{eγ}, φ_{eγ})
- 2016: analysis of full data sample 2009-2013

BR $(\mu^+ \rightarrow e^+ \gamma) < 4.2 \cdot 10^{-13}$ (90% CL)

→ factor ~30 improvement compared to MEGA experiment

Baldini *et al.,* Eur. Phys. J. C (2013) 73:2365 Baldini *et al.,* Eur. Phys. J. C (2016) 76:434

Hildebrandt , PSI

increase the sensitivity for the signal (SES – single event sensitivity)

reduce the background

- MEG \rightarrow MEG II: increased beam rate (2x)
 - improved resolutions of sub-detectors (2x)
 - $^{\rm o}$ aiming for a sensitivity of ${}^{\sim}\!6\cdot10^{{}^{-14}}$

increase the sensitivity for the signal (SES – single event sensitivity)

reduce the background

Hildebrandt , PSI

VCI2019, Vienna, 20.02.2019 - 5

MEG II Experiment

Cylindrical Drift Chamber - 1

- designed to measure 52.8 MeV/c e⁺
 - single volume detector
 - high transparency
 - low multiple scattering contribution
 1.58 · 10⁻³ X₀ along e⁺ track
- mechanics
 - length = 200 cm, \emptyset_{outer} = 60 cm
 - sensitive region 29 cm < r_{sensitive} < 17 cm corresponding to the bending radius of 52.8 MeV/c e⁺ in the magnet
 - carbon fiber support structure (1.76 mm thick) consisting of two half-shells
 - endplates with stacked pcbs and PEEK spacers
 - aluminized Mylar foil to separate sensitive volume with wires and inner part with µ-beam and stopping target

Cylindrical Drift Chamber - 2

wiring

- stereo angle geometry (6.0° to 8.5°)
 → hyperboloid volume
- 10 concentric drift cell layers (original design) realised: 9 layers
- 2 guard wire layers
- (approximately) squared drift cell size ± z_{max}: 6.7 mm (inner) – 8.7 mm (outer) z = 0: 5.8 mm (inner) – 7.5 mm (outer)
- 20 μm gold-plated W wires
 40 μm, 50 μm silver-plated Al wires
 (→ 1728 + 9408 + 768 = 11902 wires with 272 kg)
- readout/hit reconstruction principle:
 - stereo angle geometry
 - cluster counting and timing technique
 - double readout for charge division and signal time propagation difference (DRS4)

- He-iC₄H₁₀ gas mixture, mixing ratio 90:10
 - helium-based gas mixture due to need of long radiation length
 small contribution to multiple scattering important for low momentum measurement
 - isobutane added as quencher to increase HV stability
- ageing tests (performed with He-iC₄H₁₀, 85:15)
 - laboratory tests with x-ray source, acceleration factor 20x
 - «hottest» spot: central region of innermost anode wire
 ~30 kHz e⁺/cm → 0.5 C/cm in 3 years (@ 2.10⁵ gas gain) → ~15% gain loss/year
 - in general: < 10% gain loss/year</p>

Counting Gas – Cluster Counting Technique

- primary ionisation
 - ~13 e⁻/cm (n_p dominated by W_{He} = 41 eV)
 - large spacing between the individual clusters ightarrow cluster counting and timing technique

• «traditional»

→ increased number of supporting points along particle trajectory

-0.6

- → improved track fitting accuracy and momentum determination
- performance (resolution, σ): single hit (prototype) ~110 µm in r-direction momentum (MC) ~110 keV/c (@52.8 MeV/c) angular (MC) ~5.7 mrad in θ, ~6.0 mrad in φ

Cataldi, Grancagnolo, Spagnolo, NIM A 386 (1997) 458-469 Tassielli, Grancagnolo, Spagnolo, NIM A 572 (2007) 198-200

Signorelli, D'Onofrio, Venturini, NIM A 824 (2016) 581-583 Baldini *et al.*, 2016 JINST 11 P07011

VCI2019, Vienna, 20.02.2019 - 10

- semi-automatic wiring robot
 - to string continuously variable wire pitch and stereo angle configurations
 - to apply a pre-defined mechanical tension to the wires, constant and uniform (± 0.05g)
 - $\, {}^{\rm e}\,$ to monitor the wire locations and their alignment (~20 $\mu m)$
 - to monitor the soldering quality on the pcb

Chiarello et al., NIMA in press, https://doi.org/10.1016/j.nima.2018.10.112

VCI2019, Vienna, 20.02.2019 - 11

Construction Work - 1

Hildebrandt , PSI

VCI2019, Vienna, 20.02.2019 - 12

Construction Work - 2

Hildebrandt , PSI

VCI2019, Vienna, 20.02.2019 – 13

- observation: during assembly in 2016 and 2017 several silver-coated Al wires broke
 - even $\ \ \, ^\circ$ the elongation $\Delta L/L$ was only at 50% of the elastic limit
 - the wires passed a preceding stretching test during QA procedure (stretching up to 75% of elastic limit)
- intensive examinations of the breaking point with SEM and EDS
 - traces of Na and Cl
- laboratory test:
 - «untouched» wires were immersed or sprayed with water and 3% water solution of NaCl
 - → in all cases wire breaking could be induced and breaking point looked identical to broken wires in drift chamber

 «fear»: mechanical stress could enhance the corrosion, known as Stress Corrosion Cracking (status 2019: this seems not(!) to be the case)

Humidity and Corrosion of Al Wires - 2

- conclusion: silver-coated Al wire (Al alloy 5056, Ag layer for soldering purposes), is very sensitive to corrosion induced by humidity, in particular in the presence of NaCl
- \rightarrow
 - lessons learned: \Box avoid humidity \rightarrow additional dehumidifier installed in clean room
 - - \leftrightarrow Cl traces found even on «untouched» wires from manufacturer
 - observations are sign of H₂O, Na, Cl and "Al + Ag composition with cracks"

- due to unique, but potentially bad condition in clean room caused by power cut: construction and assembly restarted from scratch in August 2016 under condition of rel. humidity <55%, since August 2017 (rel. humidity <50%) no further wire breaking occurred...
- ...but unfortunately end of 2018 during DS pre-commissioning run: signature/combination of short-circuited segments indicate broken wire US 0
- \rightarrow drift chamber will be re-opened and inspected Hildebrandt, PSI

L5, L7, L9

L4, L5, L8

11

11

10

10

Removal of broken Wire - 1

- proven strategy to remove broken wire
 - 1 mm stainless steal rod with 1.5 mm hook
 - support with 5(+1) independent axes with micrometric manual control

VCI2019, Vienna, 20.02.2019 - 16

Removal of broken Wire - 2

remark: 14 broken wires successfully removed with this procedure in August 2017

HV Stability and Mechanical Wire Tension

observation during HV conditioning in 2018

- a few drift cells showed oscillating currents
- in some cases even a permanent short occurred
- outer layers: more stable than inner layers
 higher voltages can be reached
 (outer layers: larger drift cells = larger wire distances)
- most probable reason:

mechanical tension of the wires is not sufficient taking into account - drift cell size and

- wire positioning accuracy

 \rightarrow wire tension needs to be increased!

remark: why have we been so «conservative» concerning the wire tension, i.e. 50% of elastic limit?

> ↔ «fear» of enhanced wire breaking in case of Stress Corrosion Cracking (status 2019: fear not confirmed)

VCI2019, Vienna, 20.02.2019 - 18

Stretching of Drift Chamber

- proven strategy to re-open and to lengthen the drift chamber
 - dedicated support structure with turnbuckles (used for construction)
 - during stretching procedure additional monitoring with optical or tactile measurements of distance and parallelism of end plates

 remark: parallelism on the level of <50 μm (reminder geometry: length 2 m, diameter 60 cm, applied force 280 kg)

Hildebrandt, PSI

VCI2019, Vienna, 20.02.2019 - 19

• October 2018: installation, survey, cabling, etc.

Hildebrandt , PSI

VCI2019, Vienna, 20.02.2019 - 20

Pressure Regulation & Gas Monitoring System

- gas supply & distribution, pressure control and gas monitoring
- ensures purity to avoid aging and stability of gas mixture for stable electron drift properties (3% change of iC₄H₁₀ concentration leads to 1% effects on v_d and 5% on gain)
- pressure stability on sub-Pa level achieved during operation
- gas analysis: commercial devices for H₂O, O₂ and iC₄H₁₀ (ppm-level)
- monitoring: gain measurement in thin-wall drift tubes using ⁵⁵Fe

Hildebrandt, PSI

VCI2019, Vienna, 20.02.2019 - 21

- December 2018: cosmics and Michel e^+ events at muon beam intensities of up to $10^8 \,\mu/s$
 - waveforms

remark: 1.2 GSPS, but transmission limited to 400 MHz bandwidth, consequently: individual clusters hardly resolvable...

- December 2018: cosmics and Michel e⁺ events at muon beam intensities of up to $10^8 \mu/s$
 - amplitude distributions vs HV

gain vs HV (arbitrary units)

- December 2018: cosmics and Michel e^+ events at muon beam intensities of up to $10^8 \,\mu/s$
 - scan with fixed HV at different beam intensities

- December 2018: cosmics and Michel e⁺ events at muon beam intensities of up to $10^8 \,\mu/s$
 - HV scan at full beam intensity

- December 2018: cosmics and Michel e^+ events at muon beam intensities of up to $10^8 \mu/s$
 - comparison of He-iC₄H₁₀ in mixing ratios 90:10 and 93:7 and HV values for equivalent gas gain

measurement (layer 3)

simulation (layer 1)

- MEG II experiment

 seeks for the cLFV decay μ⁺ → e⁺ γ
 aims for a sensitivity of 10⁻¹⁴
- new cylindrical Drift Chamber (CDCH)
 - low-mass construction (1.58·10⁻³ X₀)
 - improved resolutions (2x) compared to previous drift chamber system
- construction phase finished summer 2018, although facing some wire breakings and severe issue of Al corrosion
- first commissioning December 2018
 basic operation principles proven
 HV instabilities limited operation
- annual PSI accelerator shutdown
 broken wire will be removed
 chamber length will be increased
- → confidence that the Drift Chamber will fulfil the experiment's requirements

Teams and Support

collaborative effort:

- Universities/INFNs in Pisa, Lecce and Rome (I)
- Paul Scherrer Institut, Villigen (CH)
- JINR, Dubna (RUS)
- Marco Chiappini
- Gianluigi Chiarello
- Marco Francesconi
- Alessandro Baldini
- Luca Galli
- Marco Grassi
- Marco Panareo
- Francesco Renga
- Cecilia Voena
- Dieter Fahrni
- Andreas Hofer
- M.H.

- Gabriela Balestri
- Alessandro Bianucci
- Giulio Petragnani
- Fabrizio Raffaelli
- Fabrizio Cei
- Franco Grancagnolo
- Donato Nicolo
- Angela Papa
- Francesco Tassieli
- Alexander Kolenikov
- Vladimir Malyshev

- semi-automatic wiring robot
 - wiring system

soldering system

LASCON Hybrid IR laser

lifting up of pcb with vacuum operated suction cups

extraction system

unrolling from winding drum

Entries

Mean

RMS

Prob

Mean

Sigma

 χ^2 / ndf

Constan

5243

24.55

0.5679

977.7/55

 1144 ± 24.7

 24.53 ± 0.00

acceleration/ deacceleration 28 29 Wire Tens (g)

 0.1506 ± 0.0023 16 loops constant wiring speed

Chiarello et al., NIMA in press, https://doi.org/10.1016/j.nima.2018.10.112

Measurement of Wire Tension

- based on measurement of resonance frequency
 - $f = \frac{1}{2L} \sqrt{\frac{T}{\rho}}$ where f fundamental resonance frequency T wire tension L wire length
 - $\rho\,$ linear mass density
 - capacitive coupling of two adjacent wires: C_{ww}

lafi —	C _{ww}	$^{2}/_{3}$	dD
10) -	$2\pi C\sqrt{LC}$	$\overline{\ln(2D/d)}$	D

$$=rac{\pi\varepsilon}{lnrac{2D}{d}}$$

where *d* wire diameter

- D wire distance
- L, C inductance , capacitance of auto-oscillating circuit

Hildebrandt , PSI