

The Cylindrical-GEM Inner Tracker Detector of the KLOE-2 Experiment

Alessandro Di Cicco, INFN - Roma Tre (Rome) For the KLOE-2 Collaboration

Vienna Conference on Instrumentation Feb 18th – 22th 2019, Vienna

The KLOE-2 Experiment

KLOE-2 concluded data taking in March 2018 at **DA\phiNE** ϕ -factory e⁺e⁻ collider at \forall s = 1019.4 MeV

Physics Program [EPJ C68 (2010)]

- Light hadron spectroscopy
- γγ physics
- Neutral Kaon Interferometry
- Dark Photon searches

The KLOE-2 Experiment

KLOE-2 concluded data taking in March at **DA\phiNE** ϕ -factory e^+e^- collider at $\sqrt{s} = 1019.4$ MeV

Physics Program [EPJ C68 (2010)]

- Light hadron spectroscopy
- γγ physics
- Quantum Interferometry
- Dark Photon searches

Calorimeter System

- **ECAL** Pb/Scint Fibers w PMTs
- **LET** LYSO+SiPMs
- **HET** Scint+PMTs
- **QCALT** W+ Scint Tiles w SiPMs (Quads)
- **CCALT** LYSO+APDs (Low-beta)

The KLOE-2 Experiment

KLOE-2 concluded data taking in March at **DA\phiNE** ϕ -factory e^+e^- collider at $\sqrt{s} = 1019.4$ MeV

Physics Program [EPJ C68 (2010)]

- Light hadron spectroscopy
- yy physics
- Quantum Interferometry
- Dark Photon searches

Calorimeter System

- **ECAL** Pb/Scint Fibers w PMTs
- **LET** LYSO+SiPMs
- **HET** Scint+PMTs
- **QCALT** W+ Scint Tiles w SiPMs (Quads)
- **CCALT** LYSO+APDs (Low-beta)

Tracking System

- $DC 3.7x4 \text{ m}^2 \text{ He:} C_4 H_{10} 90:10 \text{ gas mixture}$
- IT 4 cylindrical GEM layers Ar:C₄H₁₀ 90:10

Superconductive Magnet

0.52 T axial magnetic field

The Inner Tracker of KLOE-2

- \circ Improve VTX reconstruction at IP (x2 σ_{VTX})
- First batch ever of GEM foils produced with a single-mask etching developed by CERN-TE-MPE-EM for large area foils
- Ulta-light detector (< 2% X₀ material budget)
- o 70 cm active length
- 650 μm strip/pad two-view readout
- 25k channels GASTONE FEE [NIM A 732 (2013)]
- 1.6k HV channels
- FEE (INFN- Bari) & DAQ system (INFN LNF)[JINST 08 T04004 (2013)]

The Inner Tracker of KLOE-2

- \circ Improve VTX reconstruction at IP (x2 σ_{VTX})
- First batch ever of GEM foils produced with a single-mask etching developed by CERN-TE-MPE-EM for large area foils
- Ulta-light detector (< 2% X₀ material budget)
- o 70 cm active length
- 650 μm strip/pad two-view readout
- 25k channels GASTONE FEE [NIM A 732 (2013)]
- 1.6k HV channels
- FEE (INFN- Bari) & DAQ system (INFN LNF)[JINST 08 T04004 (2013)]

Each layer is a triple-GEM detector with 3/2/2/2 mm gap layout

The Inner Tracker of KLOE-2

- \circ Improve VTX reconstruction at IP (x2 σ_{VTX})
- First batch ever of GEM foils produced with a single-mask etching developed by CERN-TE-MPE-EM for large area foils
- Ulta-light detector (2% X₀ material budget)
- o 70 cm active length
- 650 μm strip/pad two-view readout
- 25k channels GASTONE FEE [NIM A 732 (2013)]
- 1.6k HV channels
- FEE (INFN- Bari) & DAQ system (INFN LNF)[JINST 08 T04004 (2013)]

Each layer is a triple-GEM detector with 3/2/2/2 mm gap layout

Kapton/Copper flexible multilayer readout circuit built at CERN TE-MPE-EM, 300 μm tot thickness

X-view: longitudinal strips

V-view: connection of pads through conductive

vias and common backplane

Inner Tracker Operation

- Cosmic-ray muon DC tracks extrapolated to IT
- Take closest reconstructed IT cluster to expected position from DC track

Dips in occupancy due to GEM foil micro-sector structure

 $\varepsilon_{\text{signle-view}}$ = 94% single-view @ Gain = 12000 Good compromise between IT clustering efficiency and detector operation with colliding beams

Inner Tracker Operation

- Cosmic-ray muon DC tracks extrapolated to IT
- Take closest reconstructed IT cluster to expected position from DC track

Dips in occupancy due to GEM foil micro-sector structure

 $\epsilon_{\text{signle-view}}$ = 94% single-view @ Gain = 12000 Good compromise between IT clustering efficiency and detector operation with colliding beams

Bhabha scattering events selected using DC track information

Two-view efficiency measurement with IT operating during collisions in agreement with cosmic-ray data analysis

Inner Tracker Operation with Collisions

Online monitoring – IT operation with collisions

Inner Tracker Operation with Collisions

Online monitoring – IT operation with collisions

Current spikes over threshold may occur at beam injections with GEM voltage drops without discharges propagating through GEM stages

Dedicated HV CAEN Board A1515CG

Successfully tested and installed in Sep 2016 on all layers for safer operation

7 independent *floating* channels Single voltage adjustment allowed

- 1. NON-RADIAL TRACKS The angle formed by a track and the radial E-field direction introduces shift & spread of the electron cloud
- **2. MAGNETIC FIELD** 0.52 T B-field orthogonal to GEM stages E-field lines: **shift** and **larger spread** of the electron cloud

- 1. NON-RADIAL TRACKS The angle formed by a track and the radial Efield direction introduces shift & spread of the electron cloud
- **2. MAGNETIC FIELD** 0.52 T B-field orthogonal to GEM stages E-field lines: **shift** and **larger spread** of the electron cloud

Cosmic-ray muon data acquired with B-field OFF

- Calibration of Non-radial track effect
- Select DC tracks crossing IT at 2 points
- Shifts and rotations to align the IT

- 1. NON-RADIAL TRACKS The angle formed by a track and the radial E-field direction introduces shift & spread of the electron cloud
- **2. MAGNETIC FIELD** 0.52 T B-field orthogonal to GEM stages E-field lines: **shift** and **larger spread** of the electron cloud

Cosmic-ray muon data acquired with B-field OFF

- Calibration of Non-radial track effect
- Select DC tracks crossing IT at 2 points
- Shifts and rotations to align the IT

Cosmic-ray muon data acquired with B-field ON

- Calibration of Non-Radial track & B-field effects
- Corrections, Shifts and rotations from B-field OFF sample

- 1. NON-RADIAL TRACKS The angle formed by a track and the radial Efield direction introduces shift & spread of the electron cloud
- **2. MAGNETIC FIELD** 0.52 T B-field orthogonal to GEM stages E-field lines: **shift** and **larger spread** of the electron cloud

Cosmic-ray muon data acquired with B-field OFF

- Calibration of Non-radial track effect
- Select DC tracks crossing IT at 2 points
- Shifts and rotations to align the IT

Cosmic-ray muon data acquired with B-field ON

- Calibration of Non-Radial track & B-field effects
- Corrections, Shifts and rotations from B-field OFF sample

Bhabha scattering events

- Validate calibration of Non-radial track & B-field effects
- Corrections, Shifts and rotations from cosmic-ray muon data analysis with B-field ON sample

The Road to the First Calibration of the IT

Tracking with IT+DC

- Start with DC reconstructed tracks
- Add IT clusters and reconstruct IT+DC tracks
- Make vertices using IT+DC tracks when IT contributes to track reconstruction

Improvement in vertex reconstruction observed with IT+DC tracking

Using 1st set of calibration constants

Further improvements expected using refined calibrations

Improved Calibrations of the IT

Conclusions

- KLOE-2 experiment successfully finished its data taking in March 2018 acquiring more than expected 5 fb⁻¹
- KLOE-2 Inner Tracker is the first cylindrical GEM detector ever used in high energy physics experiments
 - Technology fully developed at Frascati National Lab facilities
 - Operation of suach a novel detector with colliding beams while keeping good performance → Challenging task accomplished
- First detector alignment and calibration successfully performed using cosmic-ray muon and Bhabha scattering data
 - Challenging task to be accomplished. Never done before.
- IT+DC tracking and vertexing fine tuning is ongoing
 - Good improvements in tracking & vertexing already observed in many physics channels
 - Further improvements expected using refined set of calibration constants

Operation Principles of a Gas Electron Multiplier

Kapton (50 µm) cladded with Copper (5 µm) on both sides High density of equidistant holes in parallel offset rows diameter = 70 µm, pitch = 140 µm Standard GEMs manufactured with double-mask etching technique KLOE-2 CGEMs manufactured with single-mask technique

 $V_{GEM} = 500 \text{ V} \implies E_{hole} = 100 \text{ kV/cm}$ Drift field drives ionization charges into holes

Charge amplification occurs into holes Avalanche charges moves towards anode following induction field lines

Multi-GEM layouts allow to reach higher gains with safer working conditions

21

Construction of the KLOE-2 Inner Tracker

Technology fully developed at Frascati National Laboratory of INFN

Epoxy glue on 3 mm wide region 3 foils spliced together with 3 mm overlap Large-area GEM foils are made cyclidrical by rolling them on Aluminum moulds

3 anode foils spliced together without overlap to minimize dead surface

Kapton strips on head-to-head joints. CF/Nomex/CF (0.25/3/0.25 mm) supports readout foil

Construction of the KLOE-2 Inner Tracker

Technology fully developed at Frascati National Laboratory of INFN

The **Vertical Insertion System** (in collaboration with INFN-RM1) lets one electrode be inserted into the other with an *alignment precision of 0.1mm/1.5m*:

- 1) put the Anode in the machine with its mould
- 2) lift the Anode up
- 3) remove the Anode mould and put the GEM3 electrode in the machine with its mould
- 4) lift the Anode down till the GEM3 is completely inserted
- 5) follow the procedure for the other electrodes

Inner Tracker Operation – "The Edge Effect"

- Segmentation of the GEM foils causes a distortion of the effective gain
- Higher gains at the borders of HV sectors
- Observed also by ALICE, COMPASS-THGEM
- Solution: increase GEM hole diameter

Tracking with IT+DC

- Start with DC reconstructed tracks
- Add IT clusters and reconstruct IT+DC tracks
- Make vertices using IT+DC tracks when IT contributes to track reconstruction

Improvement in vertex reconstruction observed with IT+DC tracking

Using 1st set of calibration constants

Further improvements expected using refined calibrations

Front-end Electronics

128-channel custom GASTONE boards:

- 1 board has 2 chips (64+64 channels)
- Mixed analog-digital circuit
- Low power consumption, high modularity
- Low equivalent noise charge:
 0.77fC at C_{DET}=100pF

GASTONE main features	
N. channels/chip	64
Chip dimensions	4.5x4.5 mm ²
Z _{IN}	120 Ω
C _{DET}	1-200 pF
Charge gain	~19 mV/fC (C _{DET} =100pF)
Peaking time	90 ns (C _{DET} =100pF)
ENC (erms)	800e ⁻ +40e ⁻ /pF
Power consumption	~6 mW/channel
Readout	Serial LVDS

S/N = 5 if thr = 3.85 fC $thr_{CGEM} = 4.3 \text{ fC}$

Off-detector Electronics and DAQ

Data from the CGEM are readout by the **GASTONE**

The GIB boards acquire data from a the FE boards to deliver them to the ROD using Optical Fibers

VME -64X Interface

FARM ONLINE System

The ROD is a VME board which performs a first-level event building and sends data to an on-line farm via TCP/IP.