The gaseous QUAD pixel detector

Yevgen Bilevych, Klaus Desch, Jean-Paul Fransen, Harry van der Graaf, Markus Gruber, Fred Hartjes, Bas van der Heijden, Kevin Heijhof, Charles Ietswaard, Dimitri John, Jochen Kaminski, Peter Kluit, Naomi van der Kolk, Auke Korporaal, Cornelis Ligtenberg, Oscar van Petten, Gerhard Raven, Joop Rövekamp, Lucian Scharenberg, Tobias Schiffer, Sebastian Schmidt and Jan Timmermans

VCI2019 - 15th Vienna Conference on Instrumentation
Pixel TPC

Single chip 2017
Quad 2018
Module 2019
TPC plane
GridPix technology

- Pixel chip with integrated Grid (Micromegas-like)
- InGrid post-processed @ IZM
- Grid set at negative voltage (300 – 600 V) to provide gas amplification
- Very small pixel size (55 µm)
- Detecting individual electrons

- Aluminium grid (1 µm thick)
- 35 µm wide holes, 55 µm pitch
- Supported by SU8 pillars 50 µm high
- Grid surrounded by SU8 dyke (150 µm wide solid strip) for mechanical and HV stability
Pixel chip: TimePix3

- 256 x 256 pixels
- 55 x 55 µm pitch
- 14.1 x 14.1 mm sensitive area
- TDC with 610 MHz clock (1.64 ns)
- Used in the data driven mode
 - Each hit consists of the pixel address and time stamp of arrival time (ToA)
 - Time over threshold (ToT) is added to register the signal amplitude
 - compensation for time walk
 - Trigger (for t_0) added to the data stream as an additional time stamp

- Power consumption
 - ~1 A @ 2 V (2W) depending on hit rate
 - good cooling is important
Single chip test in test beam Bonn (June 2017)

- ELSA: 2.5 GeV electrons
- Tracks referenced by Mimosa telescope
- Gas: Ar/CF$_4$/iC$_4$H$_{10}$ 95/3/2 (T2K)
- Electrons: \sim100 e/cm
- $E_d = 280$ V/cm, $V_{\text{grid}} = -350$ V

Published paper on 2017 testbeam: https://doi.org/10.1016/j.nima.2018.08.012
TimePix3 time walk correction

Time walk error: time of arrival depends on signal amplitude

Correction using Time over Threshold (ToT) as a measure of signal strength

\[\delta Z_{\text{timewalk}} = \frac{c_1}{t_{\text{ToT}} + t_0} + Z_0 \]

Residual distribution improved

Higher order corrections did not yield further improvements

(Blum, Particle detection 2008)
Single hit resolution in transverse direction

\[D_T = 306 \, \mu m/\sqrt{cm} \]

(318 ± 7 \, \mu m/\sqrt{cm} \text{ expected})

Single hit resolution in pixel plane:

\[\sigma^2_y = \sigma^2_{y0} + D^2_T (z - z_0) \]

Depends on:

- \(\sigma_{y0} = \text{pixel size} / \sqrt{12} \)
- Diffusion \(D_T \) from fit

Note that:

- A hit resolution of \(~250 \, \mu m\) is \(~25 \, \mu m\) for a 100-hit track (\(~1 \, \text{cm} \) track length)
- At \(B = 4 \, T \), \(D_T = 25 \, \mu m/\sqrt{cm} \)
Single hit resolution in longitudinal direction

\[D_L = 226 \text{ } \mu\text{m}/\sqrt{\text{cm}} \]

(201 \pm 5 \text{ } \mu\text{m}/\sqrt{\text{cm}} \text{ expected})

Single hit resolution in drift direction

\[\sigma_z^2 = \sigma_{z0}^2 + D_L^2 (z - z_0) \]

Depends on
- \(\sigma_{z0} \) from fit
- Diffusion \(D_L \) from fit

The additional ToT cut (>0.60 \(\mu \text{s} \)) was applied to avoid large time walk errors
Pixel dE/dx performance

- dE/dx resolution with truncated mean
 - From the single chip tracks; 1 m long tracks are made;
 - nr of electrons counted in slices of 20 pixel and reject 10% highest slices
 - Distances along track are scaled by 1/0.7 to get an estimation for the dE/dx of a MIP
 - Resolution is 4.1% for a 2.5 GeV electron and 4.9% for a MIP
- Separation $S = (N_e - N_{MIP})/\sigma_e$
- 8σ MIP-e separation for a 1 meter track

A pixel readout can in principle within the resolution (diffusion) separate primary from secondary clusters. dE/dx can be measured by cluster counting and performance separation enhanced.
Deformations in pixel plane (XY) and drift direction (Z)

- The RMS of the mean residuals is 7 μm in the pixel plane and 21 μm (0.3 ns) in the drift direction in the selected region.

How can we make an even better detector?
- Improve the quality (homogeneity) of the InGrid; redesign the dike and edges.
- Go to a large areas keeping the field distortions (at edges) minimal -> QUAD.
QUAD design and realization

- Four-TimePix3 chips
- All services (signal IO, LV power) are located under the detection surface
- The area for connections was squeezed to the minimum
- Very high precision 10 μm mounting of the chips and guard
- QUAD has an sensitive area of 68.9%
- DAQ by SPIDR

39.6 x 28.38 mm

series of QUADs

VCI2019 - 15th Vienna Conference on Instrumentation
QUAD test beam in Bonn (October 2018)

- ELSA: 2.5 GeV electrons
- Tracks referenced by Mimosa telescope
- QUAD sandwiched between Mimosa planes
 - Largely improved track definition
- Gas: Ar/CF$_4$/iC$_4$H$_{10}$ 95/3/2 (T2K)
- $E_d = 280$ V/cm, $V_{\text{grid}} = -300$ V
- Typical beam height above the chip: ~ 1 cm

Preliminary results will be presented here
QUAD time walk results

\[\delta Z_{\text{timewalk}} = \frac{c_1}{t_{\text{ToT}} + t_0} + Z_0 \]

- Time walk correction works well
- Applied for all analysis results
QUAD single hit resolution

Transverse

Longitudinal

\[D_T = 419 \, \mu m/\sqrt{cm} \]

\[D_L = 259 \, \mu m/\sqrt{cm} \]
QUAD edge deformations

- Small deformations due to:
 - Dead zone between chips
 - Grounded region between chips
- Are corrected by:
 - Fitted correction function
 - Adding proper guard wire electrode
QUAD deformations in transverse plane (XY)

- After applying fitted edge corrections
- RMS of the mean residuals are 26 µm over the whole QUAD

VCI2019 - 15th Vienna Conference on Instrumentation
Next: QUAD as a building block

Cooling channels

8-QUAD module

Guard wires not yet installed
Conclusions

- Since 2017 three TimePix3 wafers were successfully equipped with an InGrid.
- A single chip GridPix detector from this production was reliably operated in a test beam in 2017.
 - Single electron detection => the resolution is primarily limited by diffusion.
 - Systematic uncertainties are low: < 10 µm in the pixel plane.
 - dE/dx resolution for a 1 m track is 4.1%.

- Preliminary results from a recent 2018 QUAD test beam were presented.
- Data quality and resolutions are similar to the single chip test beam results.
- Small edge deformations at the boundary between two chips are observed.
 - We will add guard wires to the module.
- A production of 14 QUADs is finished.
 - QUADs are installed in an 8-QUAD module.