

Novel Resistive-Plate WELL sampling element for (S)DHCAL

Project supported by the RD51 collaboration @ CERN

<u>S. Bressler</u>¹, P. Bhattacharya¹, A. Breskin¹, A. Coimbra¹,
L. Moleri^{1,2}, D. Shaked-Renous¹, A. Tessi¹,
M. Chefdeville³, G. Vouters³, J. Karyotakis³, C. Drancourt³

¹ Weizmann Institute of Science (Israel)
² Technion - Israel Institute of Technology (Israel)
³ Centre National de la Recherche Scientifique (France)

Traditional Calorimetry

Particle reconstruction and Identification

- Typical multi-purpose experiments are designed in an onion shape: tracker ⇒ ECal ⇒ HCal ⇒ muon system
- Unique signature for each of the stable particles
 - Enables reconstruction and identification of isolated particles
 - e/γ absorbed in the ECal (EM showers)
 - $n/p/\pi/k$ absorbed in the HCal (Hadronic showers)

Jet reconstruction

- Jet bunch of collimated non-isolated particles (originating from the same colored particle)
- Individual particles / showers can't be resolved in the calorimeters
 - Reconstructed as single objects jets

Traditional Calorimetry

Jet energy resolution

- Typical calorimeters are non-compensating
 - Respond differently to the EM and hadronic components of the shower ⇒ calibration is very limited
- Large fluctuations in the fraction of the EM and Hadronic componeness
- Large jet-by-jet energy deposition fluctuations
- Large fluctuations in the fraction of the 'invisible energy' deposited energy not contributing to the measured signal
- \Rightarrow The energy resolution of traditional HCals is intrinsically limited
- $\sim 70\%$ of the jet energy is carried by hadrons
 - \Rightarrow Strong dependency on the HCal
 - \Rightarrow Poor jet energy resolution
 - \Rightarrow Prevent doing precision measurements with hadronic final states \Rightarrow needs to be improved
- The target jet energy resolution is $\frac{\sigma_E}{E} = \frac{30\%}{\sqrt{E}} \Rightarrow 3\%$ for 100 GeV hadrons

Two possible solutions

- Develop compensating calorimeters \Rightarrow calibration becomes possible \Rightarrow highly non trivial
- Reduce the dependency on the HCal \Rightarrow Particle flow calorimeters

Particle flow calorimeters

Reduce the dependency on the HCal

- Only 10% of the jet energy is carried by neutral hadrons
- 90% of the jet energy can be measured precisely in the other subsystems
 - Charge hadrons in the tracker
 - Electrons in the ECal, tracker or both
 - photons in the ECal
- \Rightarrow Need to be able to resolve the individual particles in a jet

HCal requirements

- High granularity to minimize the confusion terms
 - Energy depositions that can be associated to more than one particle
- \Rightarrow Many (hundred of thousand) readout channels
- Located inside the magnetic field for better separation of charged from neutral particles
- The best possible measurement of neutral hadron energy
- \Rightarrow Controlled response

Several solutions

- Developed and studied by the CALICE collaboration
- Analog HCal worse granularity with more accurate single-particle energy measurement
- (Semi) Digital HCal better granularity with less accurate single-particle energy measurement

(Semi) Digital HCal - (S)DHCAL

Sampling calorimeter - baseline requirements

- (Semi) Digital readout
- 1 cm² granularity
- 40-50 layers of sampling element with absorbers in between
- As thin as possible (to minimize cost of the magnet system)

Linear Collider Collaboration

Underline assumption

- Number of fired hits in the shower is proportional to the incoming particle energy
- Non-linear effects when more than a single track fragment hit the same readout pad
 - If pads are not small 'enough'
 - At large energies when the shower is collimated
 - At the center of the shower where most of the EM energy is deposited
- Can be mitigated
 - With software calibration
 - With semi-digital readout; Two/Three thresholds rather than one

<u>CLIC</u>

Sampling elements for (S)DHCAL

Underline assumption

• Number of fired hits in the shower is proportional to the incoming particle energy

Requirements for DHCAL

- High detection efficiency
- Low pad multiplicity one pad fire per track

! To the best of our knowledge - no real studies characterized the performance of a particle flow algorithm as a function of these two parameters

Requirements for SDHCAL

- High detection efficiency
- Low pad multiplicity one pad fire per track
- Proportional response pulse height proportional to the energy deposition

Technologies considered

Baseline technology - Glass RPC

- By far the most studied solution
- Full prototype: 48 layers 1 m²
- Iron and Tungsten
- Operated in DHCAL and SDHCAL modes

Possible alternative - Micro-Pattern-Gaseous-Detector (MPGD)

- Triple GEMs 1 m² prototype were built
- Micromegas 1 m² prototype were built, 6 were embedded in a Glass RPC prototype
- Resistive Plate WELL this talk..

Why consider other alternatives

RPC Vs. MPGD - potentially benefit from one or more of the following

- Lower pad multiplicity for better efficiency
- Better rate capabilities
 - Relevant also for instantaneous high rates within a single shower
- Closed geometry vs open one
- Proportional response (SDHCAL)
- Environmental friendly gaseous

Technology	pad multiplicty	efficiency %	Reference
Glass RPC	1.5-2	90-95	J. Repond, in TIPP 2011 Conf. Chicago 4, (2011)
MM	1.1	98	C. Adloff et al., Recent results of Micromegas sDHCAL with a new readout chip, (2012)
Resistive MM	~1.1	95*	M. Chefdeville, et al., PoS, SISSA, (2014) 54
GEM	1.3	95	J. Yu, et.al., Phys. Procedia 37, Elsevier, (2012) 591
RPWELL	1.2	98*	S. Bressler, et.al., J. Instrum. 11, (2016) P01005

*smaller area

- Academic interest
 - Life is like a box of chocolate you never know what you gonna get ...

The Resistive Plate WELL (RPWELL)

- Single sided THick Gaseous Electron Multiplier (THGEM)
- Coupled to segmented readout through material of high bulk resistivity $(10^8 10^{10} \Omega cm)$
 - Combining MPGD and RPC concepts
- Discharge free operation at high gain $(10^4 10^7)$ depending on the primary ionization
- Moderate rate capabilities

Figure 1. The Resistive-Plate WELL (RPWELL) configuration with a resistive anode and a readout electrode. The WELL, a single-faced THGEM, is coupled to a copper anode via a resistive plate. Charges are collected from the copper anode. In some experiments the WELL was directly coupled to the metal anode.

A. Rubin et.al. arxiv:1308.6152

RPWELL for (S)DHCAL

In beam studies with 10×10 and 30×30 cm^2 detector prototypes

- In Ar- and Ne-based gaseous mixtures
- 150 GeV muon and pion beams at the CERN/SPS beam line
- APV25/SRS analog readout electronics
- RD51 MM-based tracker
- Internal thickness ~6 mm excluding readout electronics
 - Driven by 5 mm drift gap
- Modular structure
- Segmented electrodes
- Geometry not optimized large dead regions due to support structure

Figure 2. Detector prototype parts: (a)–(c). (d) Assembling the resistive plate (c) on top of the readout anode (b), using conductive tape. (e) The open detector with all its elements (except the vessel cover): the anode and resistive plate (not visible); the THGEM electrode, with the support nylon pins (white) and Delrin[®] spacers (black); the cathode (lifted on the right side); the aluminium vessel.

L. Moleri et al 2016 JINST 11 P09013

RPWELL for (S)DHCAL

Main results $30 \times 30 \ cm^2$

- 1.2 average pad multiplicity at 98% detection efficiency
- Discharge free operation also under high intense pion beam
- Uniform response
- Moderate rate capabilities
- Measurements conducted with APV25/SRS analog readout

10²Hz/cm² µ beam

Ne/(5%CH₄
Ar/(5%CH₄)

Ar/(7%CO)

2

2.2 2.4

multiplicity

time [h]

- Discharges close to the support spokes (no discharges with $10 \times 10 \ cm^2$ proto) \Rightarrow lead to significant design modifications
 - \Rightarrow No support structure
 - \Rightarrow Gluing the electrode to the resistive plate

Design

- Non modular (glued rather than screwed)
- No support structure minimal dead region
 - Achieved after several iterations
- 3 mm drift gap (for operation with Ar-based gaseous mixture)

First (S)DHCAL prototype

- With (S)DHCAL electronics based on the MICROROC chip
 - Developed within CALICE by the Omega group
- With 1 cm² pad readout
- Silicate glass resistive plate (~ $10^{10} \Omega cm$)
- Resistive plate/anode coupling through graphite-epoxy layer (M Ω)

Assembly

S. Bressler, http://www.weizmann.ac.il/particle/Bressler

QA/QC

- Careful selection of components
 - Uniform electrode thickness first prototype had 20% thickness variations
 - \Rightarrow large gain/efficiency variations
 - \Rightarrow Poor performance and instabilities
 - Uniform (thickness) and precise (cutting) glass tiles
- Inspection under microscope to validate interface coating
 - The interface between the glass tiles is potentially an open path between the top WELL electrode and the anode
 - In the future there is a need for larger area tiles
- Leak current measurements
 - Before and after any gluing step

Test beam setup

- Studies conducted at the CERN/SPS beam line with 150 GeV muons
- In setup combining 3 MM detectors and 2 RPWELLs
 - One with MICROROC/ASU digital readout and one with APV25/SRS analog readout
- Ar/7%CO₂ gas mixture

Goals

- Validate the new design
- Make sure that the RPWELL can be readout with MICROROC/ASU readout

Tracker

Main results

- New design with no support structure works well
- New assembly is feasible
 - Glue does not penetrate the holes
- Large efficiency variations
 - Due to large thickness variations
 - Reaching > 90% in the thiner regions
- Glass tile interfaces are weak point
- The RPWELL couples well with the MICROROC/ ASU semi-digital readout

pad multiplicity

Sampling Calorimetry with REsistive Anode MPGD

• Goal: construct the first MPGD-based sampling calorimeter

energy resolution

0.9

0.8

0.7

0.6

0.5

0.4

0.3F

0.2

0.1

e energy

- As an alternative to the RPC baseline technology
- Two technologies
 - RPWELL
 - Resistive MICROMEGAS
- Geometrical requirements
 - $50 \times 50 \ cm^2$ is large enough
 - 15 layers are sufficient for full containment of electrons
 - 25 layers are necessary for pions
- Geometry reality
 - 12 layers in total:
 - 5 $50 \times 50 \ cm^2$ RPWELL
 - 3 $50 \times 50 \ cm^2$ Resistive bulk MM
 - $3+1 16 \times 16 \ cm^2$ Bulk+Resistive Bulk MM
 - 2 cm steel absorbers between the layers
 - Single DAQ system
 - Based on the MICROROC Chip
 - HV mainframe and monitoring provided by RD51

RD51 Institutes

- 1. CNRS/IN2P3/LAPP, Maximilien Chefdeville <u>chefdevi@lapp.in2p3.fr</u>
- 2. Weizmann Institute of Science, Shikma Bressler <u>shikma.bressler@weizmann.ac.il</u>
- 3. NCSR Demokritos/INP, Theodoros Geralis <u>geral@inp.demokritos.gr</u>
- 4. CEA/IRFU, Maxim Titov <u>maxim.titov@cea.fr</u>
- 5. University of Aveiro, Joao Veloso joao.veloso@ua.pt
- 6. University of Coimbra, Fernando Amaro famaro@uc.pt

Sampling Calorimetry with REsistive Anode MPGD

- Geometry reality
 - Non uniform layers were excluded
 - Most of the analysis was conducted with 8 layers 2 RPWELLs
 - Operation voltage 1575 V close to efficiency plateau
- Pion beam 2-6 GeV
- 3 thresholds setup not optimized
 - DAC0 0.8 fC
 - DAC1 1.4 fC
 - DAC2 3.8 fC

RPWELL for SDHCAL

Looking only at the RPWELL detector (chose the one with 5% thickness variations)

- Characterize the RPWELL response as a function of the shower depth
- Observed leakage at the higher energies

RPWELL for SDHCAL

First look at 'virtual' response

- Number of hits vs incoming particle energy
 - Deduced from measurement with single layer
- Expecting significant leakage hence significant deviation from linearity

• To be compared e.g. to CALICE results

RPWELL for SDHCAL

Next steps - many things to do

- Conclude the current analysis
 - Expected energy resolution with full RPWELL-SDHCAL
 - Understand the number of hits distribution
 - Compare to MC simulation
 - Look at the performance under different irradiation conditions
- Based on analysis results
 - Optimize detector design, assembly and testing procedures
- Measurements in cosmic test bench
 - Individual layers efficiency and multiplicity
 - Layer uniformity
- Compare results to MM and GlassRPC

Summary

- SDHCAL is seriously considered as a solution to all future accelerator experiments
- GlassRPC-based SDHCAL performs nicely
- MPGD-based SDHCAL could outperform so worth being developed and studied
- RPWELL is a potential candidate