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Traditional Calorimetry

Particle reconstruction and Identification
* Typical multi-purpose experiments are designed 1n an onion shape:
tracker = ECal = HCal = muon system
» Unique signature for each of the stable particles
* Enables reconstruction and identification of isolated particles
* ¢/y absorbed 1n the ECal (EM showers)
* n/p/mt/k absorbed in the HCal (Hadronic showers)

http://atlas.ch

Jet reconstruction
« Jet - bunch of collimated non-1solated particles (originating from
the same colored particle)

 Individual particles / showers can’t be resolved in the calorimeters
» Reconstructed as single objects - jets

Parton level

\ Particle Jet Energy depositions
P In calorimeters
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http://cms.web.cern.ch/news/jets-cms-and-determination-their-energy-scale

Traditional Calorimetry

Jet energy resolution oo lovel L
» Typical calorimeters are non-compensating e

» Respond differently to the EM and hadronic components }n )

of the shower = calibration is very limited TSN\ Particle Jet Energy depositions

 Large fluctuations in the fraction of the EM and Hadronic componcucts } Calor'm(gzs
» Large jet-by-jet energy deposition fluctuations -
 Large fluctuations in the fraction of the ‘invisible energy’ - deposited energy not contributing

to the measured signal
=> The energy resolution of traditional HCals is intrinsically limited

« ~70% of the jet energy i1s carried by hadrons
=> Strong dependency on the HCal

=> Poor jet energy resolution
= Prevent doing precision measurements with hadronic final states = needs to be improved

« The target jet energy resolution 1s % = 33? = 3% for 100 GeV hadrons
E

Two possible solutions
« Develop compensating calorimeters = calibration becomes possible = highly non trivial
e Reduce the dependency on the HCal = Particle flow calorimeters

S. Bressler, http:/www.weizmann.ac.il/particle/Bressler 3 RPWELL for SDHCAL
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L
Particle tflow calorimeters

Reduce the dependency on the HCal Sefkow et.al. arXiv:1507.05893
e Only 10% of the jet energy is carried by neutral hadrons 1000 T TN \1 T
* 90% of the jet energy can be measured precisely in the other N ]

subsystems | DA :

e Charge hadrons - in the tracker
* Electrons - in the ECal, tracker or both
 photons - in the ECal
= Need to be able to resolve the individual particles in a jet

y/mm
o)

-500 = . -
HCal requirements e ||
* High granularity to minimize the confusion terms L) K S
» Energy depositions that can be associated to more than %% 1000 1500 200 2500
one particle K
= Many (hundred of thousand) readout channels
» Located inside the magnetic field for better separation of charged from neutral particles
e The best possible measurement of neutral hadron energy
=> Controlled response

Several solutions

* Developed and studied by the CALICE collaboration

» Analog HCal - worse granularity with more accurate single-particle energy measurement

* (Sem1) Digital HCal - better granularity with less accurate single-particle energy measurement
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(Semi) Digital HCal - (S)DHCAL

° . . . . — ’ —————
Sampling calorimeter - baseline requirements T T‘L?-"
’ .

* (Semi) Digital readout

* 1 cm? granularity

* 40-50 layers of sampling element with absorbers
in between

 As thin as possible (to minimize cost of the
magnet system)

Underline assumption
* Number of fired hits in the shower 1s proportional to the incoming
particle energy
* Non-linear effects - when more than a single track fragment
hit the same readout pad
e [f pads are not small ‘enough’
At large energies when the shower 1s collimated
At the center of the shower where most of the EM energy
1s deposited
e Can be mitigated
« With software calibration
« With semi-digital readout; Two/Three thresholds rather than one
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https://clicdp.web.cern.ch/content/calorimeter-rd
http://newsline.linearcollider.org/2013/08/22/common-ground-in-ilc-and-clic-detector-concepts/tungstencal/

Sampling elements for (S)DHCAL

Underline assumption
« Number of fired hits 1n the shower 1s proportional to the incoming
particle energy

Requirements for DHCAL
* High detection efficiency
* Low pad multiplicity - one pad fire per track

I To the best of our knowledge - no real studies characterized the performance of a particle
flow algorithm as a function of these two parameters

Requirements for SDHCAL

« High detection efficiency

* Low pad multiplicity - one pad fire per track

* Proportional response - pulse height proportional to the energy deposition
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.
Technologies considered

Baseline technology - Glass RPC
» By far the most studied solution
 Full prototype: 48 layers 1 m?2

e Iron and Tungsten

* Operated in DHCAL and SDHCAL modes

From Jianbe1 Liu @ IAS HEP2019
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See also Bilki et.al arxiv:1404.0041

Possible alternative - Micro-Pattern-Gaseous-Detector (MPGD)
* Triple GEMs - 1 m? prototype were built
« Micromegas - 1 m? prototype were built, 6 were embedded in a Glass RPC prototype
» Resistive Plate WELL - this talk..

S. Bressler, http:/www.weizmann.ac.il/particle/Bressler
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Why consider other alternatives

RPC Vs. MPGD - potentially benefit from one or more of the following
e Lower pad multiplicity for better efficiency
 Better rate capabilities
* Relevant also for instantaneous high rates within a single shower
e Closed geometry vs open one
 Proportional response (SDHCAL)
« Environmental friendly gaseous

Technology pad multiplicty efficiency % Reference
Glass RPC 1.5-2 90-95 J. Repond, in TIPP 2011 Conf. Chicago 4, (2011)
MM 1.1 08 C. Adloff et al., Recent results of Micromegas sDHCAL with a new readout chip, (2012)
Resistive MM ~1.1 95%* M. Chefdeville, et al., PoS, SISSA, (2014) 54
GEM 1.3 95 J. Yu, et.al., Phys. Procedia 37, Elsevier, (2012) 591
RPWELL 1.2 08 * S. Bressler, et.al., J. Instrum. 11, (2016) P01005

*smaller area

e Academic interest
 Life 1s like a box of chocolate - you never know what you gonna get ...

S. Bressler, http:/www.weizmann.ac.il/particle/Bressler 8 RPWELL for SDHCAL



The Resistive Plate WELL (RPWELL)

Single sided THick Gaseous Electron Multiplier (THGEM)

Coupled to segmented readout through material of high bulk resistivity (10% — 10'Y Qcm)
e Combining MPGD and RPC concepts

Discharge free operation at high gain (10* — 10’) depending on the primary ionization
Moderate rate capabilities

miP Cathode mesh
T DN D D N N N N N — ..*".‘_ I N — i
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Figure 1. The Resistive-Plate WELL (RPWELL) configuration with a resistive anode and a readout elec-
trode. The WELL, a single-faced THGEM, is coupled to a copper anode via a resistive plate. Charges are
collected from the copper anode. In some experiments the WELL was directly coupled to the metal anode.

A. Rubin et.al. arxiv:1308.6152

S. Bressler, http:/www.weizmann.ac.il/particle/Bressler 9 RPWELL for SDHCAL



In beam studies with 10 x 10 and 30 x 30 c¢m? detector prototypes
 In Ar- and Ne-based gaseous mixtures

150 GeV muon and pion beams at the CERN/SPS beam line
APV25/SRS analog readout electronics

RD51 MM-based tracker

(a) Single-sided THGEM (b) Readout anode (c) Resistive plate
— T

Internal thickness ~6 mm excluding
readout electronics

* Driven by 5 mm drift gap
Modular structure b
Segmented electrodes

Geometry not optimized -

large dead regions due to support structure

(e)

Figure 2. Detector prototype parts: (a)—(c). (d) Assembling the resistive plate (c) on top of the readout anode
(b), using conductive tape. (e) The open detector with all its elements (except the vessel cover): the anode
and resistive plate (not visible); the THGEM electrode, with the support nylon pins (white) and Delrin®
spacers (black); the cathode (lifted on the right side); the aluminium vessel.

L. Moleri et al 2016 JINST 11 P09013
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RPWELL for (S)DHCAL
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50 x 50 em* RPWELL prototypes

Design
e Non modular (glued rather than screwed)
e No support structure - minimal dead region
» Achieved after several 1terations
« 3 mm drift gap (for operation with Ar-based gaseous mixture)

First (S)DHCAL prototype
» With (S)DHCAL electronics based on the MICROROC chip
» Developed within CALICE by the Omega group
e With 1 cm? pad readout
« Silicate glass resistive plate (~1019Qcm)
 Resistive plate/anode coupling through graphite-epoxy layer (M)

§M|P [1 Copper
3 mm I :: Ar/(7°/oC02) Avdrift D FR4
\v | Bl Glass

0.8 mm—» ' ' |
0.6 mm

i — _ A\ Epoxy /
I , Graphite
Segmented anode Mixture
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50 x 50 em* RPWELL prototypes

Assembly

T —

RP tile
e

Gluing the WELL electrode | \

r— S I!’x‘

? HV connection

[P

S. Bressler, http:/www.weizmann.ac.il/particle/Bressler RPWELL for SDHCAL



50 x 50 em* RPWELL prototypes

QA/QC
 Careful selection of components
» Uniform electrode thickness - first prototype had 20% thickness variations

=> large gain/efficiency variations
= Poor performance and instabilities
e Uniform (thickness) and precise (cutting) glass tiles

* Inspection under microscope to validate interface coating
» The interface between the glass tiles 1s potentially an
open path between the top WELL electrode
and the anode
* In the future there 1s a need for larger area tiles

» [ eak current measurements
» Before and after any gluing step

S. Bressler, http:/www.weizmann.ac.il/particle/Bressler |4 RPWELL for SDHCAL



50 x 50 em* RPWELL prototypes

Test beam setup
 Studies conducted at the CERN/SPS beam line with 150 GeV muons
* In setup combining 3 MM detectors and 2 RPWELLSs
* One with MICROROC/ASU digital readout and one with APV25/SRS analog readout
* Ar/7%CO; gas mixture
Goals
 Validate the new design
* Make sure that the RPWELL can be readout with MICROROC/ASU readout

IR & & 4
ol il 2
o — d

gy PPWELL B

Tracker

. 2 RPWELLs

* 3 MMs

Beam direction

S. Bressler, http:/www.weizmann.ac.il/particle/Bressler |5 RPWELL for SDHCAL



Main results
« New design with no support structure works well
* New assembly is feasible
* Glue does not penetrate the holes
 Large efficiency variations
* Due to large thickness variations
* Reaching > 90% in the thiner regions
* (Glass tile interfaces are weak point

y [cm]

e The RPWELL couples well with the MICROROC/
ASU semi-digital readout
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The SCREAM project

RD51 Institutes

Samphng Calorimetry Wlth RESiStiVe AIlOdC MPGD 1. CNRS/IN2P3/LAPP, Maximilien Chefdeville chefdevi@lapp.in2p3.fr

2. Weizmann Institute of Science, Shikma Bressler shikma.bressler@weizmann.ac.il

e Goal: construct the first MPGD-based samp]ing calorimeter 3. NCSRDemokritos/INP, Theodoros Geralis geral@inp.demokitos.gr

4. CEA/IRFU, Maxim Titov maxim.titov@cea.fr

* As an alternative to the RPC baseline technology S Univray o o e s o
* Two technologies

IS b S P R P T Y BT 29
« RPWELL § R L § 09} T 0leyers
» Resistive MICROMEGAS a3 15 layers | A 2\ s s/
; R e e 20 layers ; 0.7} &‘ ——- 50 layers
e Geometrical re quirements % % Z: \\\“% ...............................................................
. 50% 50 em? i large enough s .
* 15 layers are sufficient for full 03 s
containment of electrons il
e 25 layers are necessary for pions "(')"e"ergy AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
cectron enrgy (GeV) BB ot i Bl T
e Geometry - reality
12 layers in total: . _ B
5 50 x50 cm* RPWELL
3 50 x 50 cm? Resistive bulk MM
3+1 16 x 16 cm? Bulk+Resistive Bulk MM
2 cm steel absorbers between the layers L
* Single DAQ system ‘NiNn i il
* Based on the MICROROC Chip
e HV mainframe and monitoring provided by RD51

S. Bressler, http:/www.weizmann.ac.il/particle/Bressler |7 RPWELL for SDHCAL



.
The SCREAM project

Sampling Calorimetry with REsistive Anode MPGD
* Geometry - reality

* Non uniform layers were excluded

* Most of the analysis was conducted with 8 layers - 2 RPWELLSs

* Operation voltage 1575 V close to efficiency plateau

* Pion beam 2-6 GeV
* 3 thresholds setup - not optimized

« DACO-0.8 fC

* DACI - 1.4 {C

« DAC2-3.8 {C
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Event displays

6 GeV pion

Two 2 GeV pions

3D view Z-X projection
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Event displays

Two MIPs

Bottom one outside of
the small MM acceptance

MIP and 5 GeV pion

3D view:-
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RPWELL for SDHCAL

Looking only at the RPWELL detector (chose the one with 5% thickness variations)
 Characterize the RPWELL response as a function of the shower depth
* Observed leakage at the higher energies

Average number of hits
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First look at ‘virtual’ response
* Number of hits vs incoming particle energy

* Deduced from measurement with single layer
» Expecting significant leakage hence significant

deviation from linearity

Calice collaboration arxiv:1901.08818
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Next steps - many things to do
* Conclude the current analysis

» Expected energy resolution with full RPWELL-SDHCAL

* Understand the number of hits distribution

e Compare to MC simulation

* Look at the performance under different irradiation conditions
* Based on analysis results

* Optimize detector design, assembly and testing procedures
* Measurements in cosmic test bench

* Individual layers efficiency and multiplicity

* Layer uniformity

e Compare results to MM and GlassRPC

 SDHCAL i1s seriously considered as a solution to all future accelerator experiments
* GlassRPC-based SDHCAL performs nicely

« MPGD-based SDHCAL could outperform so worth being developed and studied

« RPWELL 1s a potential candidate



