A new Transition Radiation Detector based on GEM technology

VCI2019 – The 15th Vienna Conference on Instrumentation

Sergey Furletov Jefferson Lab on behalf of GEM-TRD working group

Feb 21, 2019

Outline

- Introduction
- Motivation
- Detector concept
- MC studies
- Test beam results
- Summary

Electron-Ion Collider (EIC)

EIC is a proposed QCD facility to study a structure and dynamics of matter (our world):

- ✓ Property of Hadrons (Mass, Spin)
- Structure or Imaging of Hadrons (PDF, TMD, GPD)
- ✓ QCD at Extreme Parton Densities
- ✓ Emergence of hadrons

Brookhaven Lab, Long Island, NY

EIC:

Wide range of nuclei CM energy $\int s(eN) \sim 20-140 \text{ GeV}$ Luminosity L $\sim 10^{34} \text{ cm}-2 \text{ s}-1$ Polarized beams (both) Next generation of detectors

Two sites proposed their design:

Jefferson Lab, Newport News, VA

EIC detector designed by JLab

Modular design of the central detector

Jefferson Lab

Transition Radiation intro

• Transition radiation is produced by a charged particles when they cross the interface of two media of different dielectric constants $\epsilon_1 \epsilon_2$

Figure 2: Electron microscope images of a polymethacrylimide foam (Rohacell HF71)(left) and a typical polypropylene fiber radiator (average diameter ≈ 25 μm) (right) [52].
[52] A. Andronic et al. (ALICE collaboration), Nucl. Instr. and Meth. in Phys. Res. A 558, 516 (2006).

- the probability to emit one TR photon per boundary is of order $\alpha \sim 1/137$. Therefore multilayer dielectric radiators are used to increase the transition radiation yield, typically few hundreds of Mylar foils with air gaps.
- TR in X-ray region is extremely forward peaked within an angle of $1/\gamma$
- Energy of TR photons are in X-ray region (2 40 keV)
- Total TR Energy is proportional to the γ factor of the charged particle
- TRD can separate charged particles by their gamma-factor

More details about TRD: B. Dolgoshein, Transition radiation detectors, 1993 Nucl. Instr. and Meth. A 326 434-469.

GEM as transition radiation detector

- GEM is high resolution tracker (strip pitch 400 μ m).
- Low material budget detector
- To convert GEM tracker to TRD:
 - Add a radiator in the front of each chamber (radiator thickness ~5-10cm)
 - Change gas mixture from Argon to Xenon (TRD uses a heavy gas for efficient absorption of X-rays)
 - Increase drift region up to 2-3 cm (for the same reason).
- Single module could provide e/pi rejection factor of ~10 and electron efficiency ~90%
- For higher rejection, several such modules (radiator+detector) can be installed.

Select working gas

- GEM tracker uses Argon mixture, while TRD needs heavy gas to efficiently absorb X-rays (TR photons), typically Xenon based mixture.
- Plots on the right compare noble gases and silicon in terms of efficient absorption of TR photons : red - incoming (incident photon spectrum), blue - escaped TR-photons.
 - Gas thickness 20mm, silicon thickness 500 um
- The bottom left plot represents absorption length versus photons energy, and reflects a shell structure of atoms.

in Physics Research A 666 (2012) 130-147

2/20/19

Jefferson Lab

Xenon based gas mixture

- Xenon mixture differs from Argon mixture in two aspects:
 - ✓ In order to have similar to Argon drift velocity, one need to apply higher electric field in Xenon mixture: ~2000 V/cm (for 2.1 cm drift distance ~4400 V.)
 - ✓ Xenon is expensive gas (~\$20/I), hence we need a closed loop gas system with recirculation, recuperation and purification ability

8

Garfield + Magboltz

GEM-TRD prototype

9

- A test module was built at the University of Virginia
- The design includes modification needed for TRD operation:
 - > Drift distance increased to 21 mm
 - Added a side field cage with dividers to have uniform drift field in whole volume.
 - > The gas gap between the entrance window and the cathode is reduced to 400 μ m, because it is a dead volume that absorbs photons
 - New GEM HV divider to be able to control the gas gain and drift field independently.

New GEM-TRD: proto II

Jefferson Lab

Radiator for TR

- The theory of transition radiation predicts that the best radiator is a stack of regular foils:
 - 20-30 μ mylar foils and 200-300 μ air gap.
- ATLAS use foils and spacer between foils to provide an air gap.
- ZEUS and many other experiments use fleece radiators.
- Bottom pictures show GEM-TRD test module with regular and fleece radiators in front

Readout electronics for GEM-TRD

- The standard tracking GEM readout is usually based on an APV25 chip and measures peak amplitude
- TRD needs information about ionization along the track, to discriminate TR photons from energy loss of the particle.
- For the TRD test we used a precise 125 MHz, 14 bit flash ADC, developed at JLAB with VME readout.
 - FADC readout window (pipeline) up to 8 μ s
- Pre-amplifier has GAS-II ASIC chips, provides 2.6 mV/fC amplification and has a peaking time of 10 ns.

11

Jefferson Lab

X-ray and ⁵⁵Fe test

- X-ray uniformity test was performed using the APV25 for readout
- The HV and gas gain was tested with ⁵⁵Fe source for Argon and Xenon gas mixtures.

Jefferson Lab

Beam setup at JLab Hall-D

- The tests were carried out using electrons with an energy of 3-6 GeV, produced in the converter of a pair spectrometer.
- The electron energy is known from the pair spectrometer.
- The radiator is mounted in front of the GEM-TRD and covers about half of the sensitive area.
- We do not have hadron beam in this setup:
 - ✓ The effect of TR is evaluated by comparison of data from electrons with radiator and electrons without radiator.

Data analysis

- TR photons move forward at a small angle within $1/\gamma$, practically along the path of the original particle, and are detected together with dE/dx from the particle..
- There are several methods that are used to discriminate TR photons and $\,dE/dx$ from particle
 - 1. Cluster counting method
 - use one threshold on ionization amplitude (just above average dE/dx), assuming that energy deposition from TR photons is a point like and produces cluster with high amplitude. Method is widely used with straw based TRD.
 - 2. Total energy deposition
 - 3. Separation in space
 - Require high resolution detector (silicon pixels) to see natural angular distribution of TR photons, or magnetic field to deflect particle from TR photons.
 - 4. In case of measurements of ionization along the track, the likelihood or neural network methods can be used for separation of electrons and pions.
- For this test we used ionization along the track and neural network.

Ionization along the particle track

15

Jefferson Lab

Absorption regions

Soft TR-photons:

- absorbs near entrance window, therefore have largest drift time
- sensitive to dead volumes, like Xe-gap, cathode material.
- Increasing the length of the radiator thickness does not lead to increase of number of soft-photons (radiator selfabsorption)

Hard TR-photons:

- Depending on energy of TR-photons, could escape detection (depends on detection length)
- Increasing the length of the radiator leads to an increase of hard TR spectra.
- Need thick detector to absorb

MC test of machine learning technique

Drift distance is divided into 10 slices Energy deposition in slices used as input for NN Used different methods/programs (JETNET, Root based-TMVA, etc) for cross-check.

Neural network output for e/e with radiator and without radiator

Neural network output for e/π identification

2/20/19

Jefferson Lab

Machine learning in the data analysis

- For data analysis used the same method as for Monte Carlo
- All data was divided into 2 samples:
 - Training and test samples
- Top right plot shows neural network output for single module:
 - Red electrons with radiator
 - Blue electrons without radiator
- Bottom right plot is NN output extrapolated for 3 GEM-TRD modules.

Jefferson Lab

NN input parameters distribution

Distribution of energy deposition in each of 10 time slices.

19

Comparison Data with MC

- GEM-TRD was tested with ~9cm radiator, and has ~21mm drift gap
- To understand how far the detector parameters are from the optimal, two Monte Carlo scan were performed:
 - 1. Fixed gas thickness at 20mm and radiator length varied from 5cm to 30cm
 - 2. Fixed radiator length at 15cm and gas thickness varied from 5mm to 30mm
- The data point was found in good agreement with Monte Carlo
- From MC scans one can predict:
 - 1. The current setup is able to separate e/π with pion rejection factor of ~5.5
 - 2. The detector gas thickness is optimal
 - 3. With radiator length of 25cm e/ π rejection will be 16 for a single module.

TR radiator scan

٠

2/20/19

20

Tracking with GEM-TRD

Discussion of results

- High granularity TRDs are interesting for modern physics with higher energy and luminosity and are actively developing at the present time.
- Our results in a good agreement with other high granularity TRD project (GasPixel + TimePix chip)
 - F. Hartjes et al. / Nuclear Instruments and Methods in Physics Research A 706 (2013) 59-64
- The advantage of GEM-TRD with a strip readout is the price

> The price of electronics grows linearly with increasing detector size.

- Due to a large drift gap and FADC readout, GEM-TRD is able to reconstruct 3D track segments like mini TPC.
- Xenon gas mixture produces a higher ionization density on the track, which also improves tracking accuracy.

Summary

- Electron identification is very important for EIC physics. Due to a large hadron background expected in the forward (Hadron-endcap) region, a high granularity tracker combined with TRD functionality could provide additional electron identification GEM-TRD/T
- GEANT4 simulation of GEM-TRD has been performed
- First test beam measurement has been performed and showed good agreement with MC simulation.
- e/π rejection factor of 5 can been achieved with a single module
 > can be up to 16 in case of using radiator with length of 25cm
- GEM-TRD provides better tracking functionality, compared to the standard GEM tracker.

Backup slides

What rejection we can expect?

25

Jefferson Lab

Motivation / detector

- Transition Radiation Detectors (TRD) has the attractive features of being able to separate particles by their gamma factor.
- e/π separation in high γ region, where other methods are not working anymore.
- Identification of the charged particle "on the flight": without scattering, deceleration or absorption.
- Application of TRD in physics experiments: ZEUS, H1, HERMES at HERA (DESY), D0, PHENIX, ATLAS, ALICE...
- TRD in space missions AMS, PAMELA.

Jefferson Lab

Silicon TR detection (DEPFET)

^{5 – 15} cm

- Silicon pixel detector , 450 µ thick. (pixel size – 20x20µ)
- The electrons energy is 5 GeV (DESY testbeam)
- Radiator thickness 15 cm (fleece)
- TR photons are clearly visible and separated from track by a few pixels !
 - red lines shows the center of found TR clusters

XY RAW (Mod6)

XY RAW (Mod6)

TRD principle : ATLAS

- Typically in high energy physics TRD are used for electron identification and to reject hadron background.
- ATLAS TRT uses proportional gas chambers (straws) filled with Xenon gas mixture:
 - dE/dx +TR, Cluster discrimination by threshold method.

Jefferson Lab

TRD in experiments

Experiment	Radiator (x,cm)	Detector (x,cm)	Area (m^2)	Ν	L (cm)	N. chan.	Method	π_{rej}
HELIOS	foils (7)	Xe- C_4H_{10} (1.8)	0.5	8	70	1744	Ν	2000
H1	foils (9.6)	Xe-He- C_2H_6 (6)	1.8	3	60	1728	FADC	10
NA31	foils (21.7)	Xe-He- CH_4 (5)	4.5	4	96	384	Q	70
ZEUS	fibres (7)	Xe-He-CH ₄ (2.2)	3	4	40	2112	FADC	100
D0	foils (6.5)	Xe- CH_4 (2.3)	3.7	3	33	1536	FADC	50
NOMAD	foils (8.3)	Xe- CO_2 (1.6)	8.1	9	150	1584	Q	1000
HERMES	fibres (6.4)	Xe- CH_4 (2.54)	4.7	6	60	3072	Q	1400
\mathbf{kTeV}	fibres (12)	Xe-CO ₂ (2.9)	4.9	8	144	∼10 k	Q	250
PAMELA	fibres (1.5)	Xe- CO_2 (0.4)	0.08	9	28	964	Q,N	50
AMS	fibres (2)	Xe- CO_2 (0.6)	1.5	20	55	5248	Q	1000
PHENIX	fibres (5)	Xe- CH_4 (1.8)	-50	6	4	43 k	FADC	~ 300
ATLAS	fo/fi (0.8)	Xe- $\overline{\mathrm{CF}_4}$ - CO_2 (0.4)	31	36	51-108	425 k	N,ToT	100
ALICE	fi/foam (4.8)	$Xe-CO_2(3.7)$	126	6	52	1.2 mil.	FADC	200

all radiator material CH_2

TR features

- X-ray TR has remarkable features:
- TR in X-ray region is extremely forward peaked within an angle of 1/γ
- Energy of TR photons are in X-ray region (2 40 keV)
- Total TR Energy ETR is proportional to the γ factor of the charged particle

e/e efficiency with radiator vs without rad.

-JSA