Development of the thin TOF-PET scanner based on fast monolithic silicon pixel sensors

VCI 2019 - 15th Vienna Conference on Instrumentation (21st February 2019)

Daiki Hayakawa

on behalf of the TT-PET collaboration

Contents

- Introduction
 - PET-MRI
 - PET techniques
 - → Time-of-Flight (TOF)
 - ◆ Depth-of-Interaction (DOI)
- Thin TOF-PET scanner (TT-PET)
 - Design of the scanner
 - Expected performance of the scanner
- Development of fast monolithic silicon sensor
 - Test-beam measurement of the ASIC demonstrator
 - ²²Na experiment
- Conclusions

Contents

- Introduction
 - PET-MRI
 - PET techniques
 - → Time-of-Flight (TOF)
 - ◆ Depth-of-Interaction (DOI)
- Thin TOF-PET scanner (TT-PET)
 - Design of the scanner
 - Expected performance of the scanner
- Development of fast monolithic silicon sensor
 - Test-beam measurement of the ASIC demonstrator
 - ²²Na experiment
- Conclusions

PET/MRI Imaging

(10.2967/jnumed.110.074773)

- Positron Emission Tomography (PET)
 - Positrons from a radionuclide introduced in a body annihilate with the nearby tissue, emitting two back-to-back photons
 - The photons are detected in coincidence, tracking a line of response (LOR)
- Hybrid PET-MRI Imaging
 - Combining functional Image by PET and morphological image by MRI

Time-of-Flight (TOF)

 TOF information improves the signal-to-noise ratio (SNR) of reconstructed images

$$\frac{\mathsf{SNR}_{TOF}}{\mathsf{SNR}_{CONVENTIONAL}} \sim \sqrt{\frac{D}{\Delta x}}$$

Depth-of-Interaction (DOI)

- Sensitivity for photon depth of interaction improves the spatial resolution across the whole view of the scanner
- It also reduces the uncertainty of TOF measurements

- Introduction
 - PET-MRI
 - PET techniques
 - → Time-of-Flight (TOF)
 - ◆ Depth-of-Interaction (DOI)
- Thin TOF-PET scanner (TT-PET)
 - Design of the scanner
 - Expected performance of the scanner
- Development of fast monolithic silicon sensor
 - Test-beam measurement of the ASIC demonstrator
 - ²²Na experiment
- Conclusions

The TT-PET Scanner

We are developing silicon monolithic pixel sensors with 30 ps time resolution for electrons $\sigma_t \sim \frac{\mathrm{rise~time}}{S/N}$

Cooling block

- 16 wedges in a ring structure with cooling blocks
- A wedge is composed of 60 layers (12 supermodules)
- The scanner is meant to be inserted in small animal commercial MRI

Expected Performance of the TT-PET Scanner 9

Detector simulation performed with Geant4 simulation shows excellent performance of the TT-PET scanner

- The very good spatial resolution (< 750 mm FWHM) does not degrade on the border of the scanner thanks to the depth of interaction measurement
- The SNR of the reconstructed image is improved thanks to the TOF measurement arXiv: 1811.12381

- Coincidence window: 500 ps
- The LOR intercepts the phantom
- The energy deposits in the both pixels are larger than 20 keV
- High NECR (~ 900 kcps) for a 50 MBq source

- Introduction
 - PET-MRI
 - PET techniques
 - → Time-of-Flight (TOF)
 - ◆ Depth-of-Interaction (DOI)
- Thin TOF-PET scanner (TT-PET)
 - Design of the scanner
 - Expected performance of the scanner
- Development of fast monolithic silicon sensor
 - Test-beam measurement of the ASIC demonstrator
 - ²²Na experiment
- Conclusions

ASIC Demonstrator

- ASIC demonstrator in 130 nm IHP SiGe-HBT technology (β = 900, f_T = 250 GHz)
 - 30 pixels, size: $500 \times 500 \ \mu \text{ m}^2$
 - Amplifier, discriminator, 50 ps binning TDC, logic and serializers
 - ◆ The output of the discriminator is sent to a fast-OR chain, which preserves TOT and TOA
 - Thinned to 100 μ m, backplane metallized
 - 1500 Ω^* cm resistivity (full depletion voltage: ~ 45 V)
 - ◆ Confirmed by laser TCT measurement

arXiv: 1811.10246

Testbeam Measurement

- Testbeam facility at CERN SPS (MIPs)
 - Tracking telescope, providing external trigger
 - 3 chips were readout by a system developed by the DPNC (particle physics department at University of Geneva) with custom FPGA firmware
 - Applied 180 V to the pixels

Efficiency Map

- Greater than 99.9% efficiency was observed for the 26 pixels that were readout
 - 4 pixels were masked on hardware due to noise induced from signal-ended clock line
 - The region defined by the continuous lines shows the area used for efficiency calculation

Time Resolution

- 110 ps RMS was measured at 375 μ W/channel power consumption
- 130 ps RMS was measured at 160 μ W/channel power consumption
 - ♦ Pixel area: $500 \times 500 \ \mu \, \text{m}^2$, $750 \ \text{fF}$ capacitance

Best time resolution ever for silicon monolithic pixel sensor!

²²Na Measurement

 30 ps time resolution with electrons from 511 keV photons can be achieved thanks to the larger signal w.r.t. MIPs

$$\sigma_t \sim \frac{\text{rise time}}{S/N}$$

- Measurement with ²²Na source
 - Two boards, one with lead on one side and one with lead on both sides
 - Larger signal is expected by <u>electrons bouncing</u> back from lead

Preliminary Results

- Larger TOT (Time over threshold) values are observed with lead on both sides
- Measurement for time resolution and efficiency is being done

Conclusions

- The TT-PET scanner, which aims at the construction of a small animal TOF-PET scanner, was designed to exploit Time-of-Flight (TOF) and Depth-of-Interaction (DOI) of a multi-layer silicon structure
- Excellent performance of the TT-PET scanner was expected by Geant4 simulation and image reconstruction
- ASIC demonstrator with silicon monolithic pixels was fabricated in IHP SiGe-HBT technology
- More than 99.9% efficiency and 110 ps at 375 μW/channel power consumption were measured at CERN SPS testbeam facility
- Measurement with ²²Na source is on-going to prove the ~30 ps time resolution with 511 keV electrons

Laser Edge-TCT Measurement

- Laser edge-TCT measurement at DPNC
 - Depletion lengths correspond to 1500 Ω*cm resistivity